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Abstract

Lie group methods are used to find both exact and numerical similarity solutions

for compressible perturbations to an incompressible, two-dimensional, axisymmetric

vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for

which the solutions are a set of two-dimensional, self-similar, incompressible vortices.

These solutions are augmented by deriving a conserved quantity for each eigenvalue,

and identifying a Lie group which leaves the reference flow equations invariant. The

partial differential equations governing the compressible perturbations to these ref-

erence flows are also invariant under the action of the same group. The similarity

variables found with this group are used to determine the decay rates of the velocities

and thermodynamic variables in the self-similar flows, and to reduce the governing

partial differential equations to a set of ordinary differential equations. The ODE's

are solved analytically and numerically for a Taylor vortex reference flow, and nu-

merically for an Oseen vortex reference flow. The solutions are used to examine the

dependencies of the temperature, density, entropy, dissipation and radial velocity on

the Prandtl number. Also, experimental data on compressible free vortex flow are

compared to the analytical results, the evolution of vortices from initial states which

are not self-similar is discussed, and the energy transfer in a slightly-compressible

vortex is considered.
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Nomenclature

Spatial/temporal coordinates

r Radial coordinate

t Time

Acoustic time

7 Viscous time

Tt Time constant of angular momentum transport

Flow variables

u Radial velocity

v Tangential velocity

w Vorticity

M Total angular momentum

Am m th moment of vorticity

T Dissipation function

p Pressure

p Density

T Temperature

e Internal energy (italic font)

s Entropy

q Radial heat flux
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Subscripts & superscripts

()_
()_
()h
()p
()s
()e
()s_
()._
()d
( )ob_

^

()
()
(_)0
(-)1
(-)
()

Far-field values (constant)

Initial value (T = 0)

Homogeneous part of solution

Particular part of solution

Series solution

Exact solution

Self-similar part of solution

Non-self-similar part of solution

Diffusion-related value

Observed value'

Acoustic scaling

Viscous scaling

Incompressible reference flow quantities, viscous scaling

Compressible perturbation quantities, viscous scaling

Angular momentum scaling

Vector quantity

Dimensionless parameters

Pr Prandtl number

Re Reynolds number

M Mach number

Re* Time-dependent Reynolds number

M* Time-dependent Mach number

, ,!

Group parameters

a, b, c

J

m=j/2

Ti

Stretching parameters

Eigenvalue of vorticity equation, stretching parameter

Eigenvalue, stretching parameter

Translation-in-time parameter (corresponds to initial time)
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Similarity variables

rli = rlPr

_(_) = _o/(_ + _i)m+l
V(_) = _0/(_ + _i)m+lj2

_(_) = _0/(_ + _i)_m+l
"(_) = ¢1/(_ + _)_m+1

Z(V)= _1/(_ + _,)_m+,
_(_) = e_/(_ + _/)_m+_;2

¢(_) = _1/(_ + _,)_=+_;_

¢(7) = _/(_ + _)_m+2

C(V)= _1/(_ + _)_m+_

_(_) = (0_1/0_)/(_ + _,)_¢_+1_
_(V) = _1/(_ + _)_=+_

Similarity coordinate

Similarity coordinate scaled by Pr

Self-similar reference flow vorticity

Self-similar

Self-similar

Self-similar

Self-similar

Self-similar

Self-similar

Self-similar

Self-similar

Self-similar

Self-similar

reference flow velocity

reference flow pressure

temperature perturbation

density perturbation

radial velocity perturbation

tangential velocity perturbation

pressure perturbation

entropy perturbation

dissipation perturbation

vorticity perturbation

Physical constants

R

c_
c_

_ = c_/c_

a_

Specific gas constant

Specific heat at constant pressure

Specific heat at constant volume

Ratio of specific heats

Far-field sound speed
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Viscosity/conductivity

#

= #/p

Shear viscosity

Bulk viscosity

Kinematic viscosity

Thermal conductivity
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Mathematical functions/symbols
8

c%

d

dr

8

c9t

d D

d--/'or

;i()
Lm()

o(,)
max(,)
A,

e, exp

7r

dS

dV

f

Partial derivative wrt. r

Total derivative wrt. r

Partial derivative wrt. t

Total (material) derivative wrt. t

Gradient operator

Hypergeometric function

m th Laguerre polynomial

Order of magnitude of •

Maximum value of •

Maximum variation of •

Base of the natural logarithm (roman font)

Pi, 7r = 3.14159...

Differential surface element

Differential volume element

Generic flow variable/function

C _,' •

Mathematical constants

C

C_,Dj
Cm = Cj/2

Bm

Bls

Ble

Integration constant for TI

Integration constants for

Integration constant for

Integration constant for a

Integration constant for cr when m -- i, series soln.

Integration constant for _ when rn -- I, exact soln.
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D_ Frobenius series coefficients

Gm Integration constant for a

Q._ Integration constant for ¢

Wm Integration constant for

Abbreviations

ODE Ordinary differential equation

PDE Partial differential equation

wrt. with respect to

Miscellaneous symbols

_ Perturbed radial velocity scaled by/_e

Ap* (p_ - p(r = O))/p_ Normalized density-well depth

l Vortex core size
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A compressible flow is one in which a change in pressure over some characteristic

length scale of the flow results in a corresponding change in density. Similarly, a com-

pressible vortex is a vortex containing large tangential velocities which create strong

pressure gradients; these pressure gradients, in turn, produce substantial density vari-

ations across the vortex. The main objective of this thesis is to present analytical self-

similar solutions of the equations describing the viscous decay of a two-dimensional,

axisymmetric, slightly-compressible, free vortex. A quantitative characterization of

the problem at hand is given in § 1.1. However, let us first consider the current state

of basic research on this subject.

Vortices have long fascinated fluid dynamicists and although the total number of

investigations involving vortices is quite large, there has been relatively little work

on compressible vortex flow. For example, a search of the citations in Stanford Uni-

versity's science journal holdings reveals that, since 1969, the university has collected

about 18,500 articles on vortices. A similar search shows that, during the same

time period, the university libraries acquired around 330 compressible vortex articles.

Assuming these numbers are representative of the general state of vortex research,

slightly less than 2% of the work on vortex flow takes into account the effects of com-

pressibility. Further, studies of flows containing compressible vortices do not usually

focus on the basic physics or structure of a vortex, but concentrate on other aspects
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of the flow -- such as shock/vortex interaction, blade/vortex interaction, or vortex

breakdown.

The dearth of basic research on compressible vortices is especially surprising given

the fact that they play a key role in many fluid flows of physical interest: turbulent

combustion in piston and turbine engines, strong wing-tip vortices, flows with aerody-

namically generated noise, shock diffraction around sharp corners, and astrophysical

flows such as those occurring in the solar corona or in the gaseous disks of spiral

galaxies. Most fluid dynamicists are surprised to find that there are no simple an-

alytical solutions describing the viscous decay of a compressible free vortex. The

mathematical solutions to the equations of compressible vortex flow are complicated

and must usually be numerically obtained. The primary goal of this thesis is to de-

scribe a set of simple analytical solutions for compressible free vortex flow. This work

is motivated by the fact that such solutions can yield a great amount of insight into

the fundamental physical behavior of compressible vortices, as well as provide a quick

and easy means of validating computational and experimental results.

The next section further describes the flow under consideration and is followed

by a brief literature survey of work on compressible vortices and an overview of the

thesis.

1.1 Orientation

• . i ¸

The lack of work on compressible free vortices is partly due to their complexity. In

contrast, the two-dimensional motion of an isolated free vortex in an incompressible

flow is well understood. Conservation of mass requires that there is no radial velocity

in the vortex, and the Reynolds number Re, governs the vortex's evolution. For very

large Reynolds numbers, Re --+ oc, the flow is essentially inviscid, and the vortex

motion is nearly steady. Otherwise, for Re ,',, O(1) or smaller, one finds that the

viscous diffusion of angular momentum is the process which dominates the flow.

When the compressibility of fluid within the vortex is important, the flow has

an analogous dependence on the Reynolds number, but analyzing the flow becomes

more complicated. In studying a two-dimensional, compressible vortex one must
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CHAPTER 1. INTRODUCTION 3

examine the effects of heat conduction, viscous dissipation, compressibility, and radial

convection on the motion and structure of the vortex [7]. In addition to Re, solutions

for compressible vortex flow require that four other parameters be considered: the

Mach number M, the Prandtl number Pr, and the temperature dependent values of

viscosity #, and thermal conductivity _.

To get a quantitative feel for the nature of the compressible vortices under investi-

gation, consider the vortex pictured in figure 1.1 (a-e). In general, the radial profiles

of the velocities and thermodynamic variables (pressure, density, temperature, etc.)

in such a vortex may be slightly different, but the sketch illustrates the main struc-

tural features of a compressible vortex. Here r is the radial coordinate and the origin

of the system is the center of the vortex (see figure 1.2). Since the present work is

limited to two-dimensional axisymmetric vortices, the flow does not vary in the tan-

gential or axial directions. Here we will also assume that the far-field (r --+ c_) flow

conditions are constant.

The maximum tangential velocity vm occurs at the radial location li (figure 1.1 a);

li will be called the core size of the vortex. In the following analysis, li and vm are the

length scale and the velocity scale, respectively. Together with the far-field viscosity,

density, and sound speed, li and vm are used to form the Reynolds number and Mach

number of the vortex.

As a rule of thumb, the maximum tangential velocity can be considered "large"

when its magnitude is greater than or equal to about 30% of the far-field speed of

sound. Thus, for a Mach number of M > 0.30 the vortex will be considered com-

pressible; when the Mach number is lower than M _ 0.3 a simplified analysis which

assumes the flow is completely incompressible should generally suffice. However, the

vortex studied here is slightly-compressible and so vm cannot be too large either. Ais

will be further explained in §2.2 the present study uses the Rayleigh-Janzen expansion

[38] to derive equations describing compressible perturbations to an incompressible

vortex reference flow. Colonius, Lele, & Moin [12] compare the results of computations

of the full Navier-Stokes equations and numerical solutions for a slightly compress-

ible vortex flow (found using the Rayleigh-Janzen expansion). They show that the

?
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approximation is valid for Mach numbers as large as M _ 0.67. The same flow con-

ditions apply to the vortices in this work, so we will take the range of Mach numbers

under consideration to be 0.30 < M < 0.67.

The centrifugal force in the rotating vortex flow produces a pressure minimum at

the center of the vortex. The corresponding density variation in the vortex is regarded

as significant when the non-dimensional depth of the density well Ap*, which is the

difference between the density in the center of the vortex and the density in the

far-field p_o, normalized by the far-field density, is Ap* > 0.3.

Consider the vortex studied by Mandella & Bershader [26]. A two-dimensional,

compressible, free vortex was created in a shock tube by the diffraction of a shock

around a 3.7 cm chord-length NACA 0018 airfoil (see §3.3). The strength of the in-

cident shock was Ms _ 1.8, and the airfoil's angle of attack was 30 °. The vortex was

embedded in a free stream with a Mach number of Mo_ _ 0.52 and a Reynolds num-

ber, based on airfoil chord-length, of Re_ ,._ 4.4 x 105. Holographic interferometry

and pressure transducers were used to measure the density and pressure, respec-

tively, in the vortex studied. The measured density and pressure distributions in

the vortex and the estimated tangential velocity in the flow give li _ 9.3 x 10 -1 ram,

Vm _ 2.3 x 102 m s -1, M _ 6.7 x 10 -1, and Ap* _ 5.5 x 10 -1. The vortex Reynolds

number (based on li, Vm, and a far-field kinematic viscosity of _oo _ 1.1 × 10 -5) is

/_e ,,_ 2.0 × 104. The magnitude of the radial velocity in a compressible free vortex

is generally very small (figure 1.1 e). Mandella & Bershader estimate the magnitude of

the maximum radial velocity in the vortex they studied to be (max lul)/vm ,_ 1.3 × 10 -3.

However, Colonius et al. [12] have shown that if the far-field flow conditions are as-

sumed to be constant, Mandella's estimate of the radial velocity is too large and

therefore violates the Second Law of Thermodynamics. They• suggest the radial ve-

locity should be around two orders of magnitude smaller. Nevertheless, the vortex in

Mandella & Bershader's experiments clearly exhibits the tangential velocity, density,

and pressure profiles characteristic of a compressible vortex. The issues of the entropy

distribution and the entropy production in a compressible vortex will be discussed in

§§ 6.3 and 6.4.
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P_

r_

(c)

(d)

Figure 1.1: c, d



,/

J

CHAPTER 1. INTROD UCTION

(e)

Figure 1.1: The structure of a two-dimensional, compressible, free vortex -- radial

profiles of (a) tangential velocity, (b) pressure, (c) density, (d) temperature, (e) radial
velocity.

• ,,i _

The vortices considered in this work are called free vortices because there are

no boundaries in the flow for 0 < r/li < eo. Therefore, the fluid's motion is only

determined by its internal shear stresses and the exhange of momentum between

neighboring fluid particles. This is in contrast to a driven vortex in which the move-

ment is influenced by an externally controlled surface -- such as a rotating cylinder

centered at the origin of the flow [6], [23]. Additionally, we will assume that there are

no acoustic waves present in the flow (see §2.2.1).

Note that in this work the interferograms and data obtained in the experiments

of Mandella [25] will be used to describe the formation of compressible free vortices,

study their entropy distributions, and to construct initial conditions for our self-

similar vortex solutions. However, one must be careful to remember that the vortex

solutions presented in this theoretical study correspond to idealized flow conditions.

The flow-field in the experiments is less "hospitable" and less well-characterized. The



.......:_, :; '_;' ::<:, i; <!;::; i ',2 ! :!,: : _/i ¸: :: ;!, ::i-.i :

CHAPTER 1. INTRODUCTION 8

Y
r

x

Figure 1.2: Sketch of the coordinate system and flow-field. Circular lines depict

the rotating fluid in the vortex. The curved line radially emanating from the origin

schematically represents the tangential velocity profile of a Taylor vortex [36].

timescale of diffusion for the vortex studied by Mandella would be td --_ 7.9 X 10 .2 S,

based on a coresize of li _ 9.3 x 10 -1 ram, a viscosity of # ,_ 1.9 x 10 -5 N s m -2, and

a density of p_ _ 1.8 kgm-3; the observation period in Mandella's experiments 1,

tob_ _ 500 #s, is about two orders of magnitude smaller than td. In comparison, the

acoustic timescale for the vortex is ta _ 2.7#s based on the same value of li and a far-

field sound speed of ao_ ,-_ 3.4 x 102m s -1. At early times in the motion of the vortex

in Mandella's experiment, the presence of acoustic waves in the flow may affect the

vortex's evolution. Figures 1.3 and 1.4 show a compressible free vortex which has been

created using the same conditions as the vortices studied by Mandella & Bershader

[26]. Notice the weak circular shockwave, the non-linear acoustic waves, and the rolled

up vortex sheet surrounding the vortex. The experimental flow is quite complex and

the far-field flow conditions may be time dependent 2. The acoustic waves propagate

away from the vortex just after the vortex has formed. In this experiment, and in

1During this observation period, the free vortex travels a distance of _ 9.0 cm and executes about
130 rotations or "eddy turnovers".

2Over the short observation time of MandeUa's experiment, the distributions of radial veloc-

ity and entropy may be very sensitive to small changes in the far-field pressure and density; see
yon Ellenrieder, Kao, & Bershader [40] and Appendix A.
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the experiments of Mandella & Bershader the observations are made within 500 #secs

of the vortex's formation. Because of the presence of these waves, and the short

observation period of Mandella's experiments, a direct comparison cannot be made

between the time evolution of the vortex studied by Mandella and the viscous decay

of the self-similar vortex solutions developed here.

i!?)/

)

Figure 1.3: A shadowgraph of the flow-field around a vortex created under the same

conditions used in the experiments of [26]. There are several acoustic waves present

in the flow (circular waves centered near the vortex center). Also, one can see several

contact surfaces and a slip-line, which extends from the trailing-edge of the airfoil,

being wrapped around the vortex.

The final approximations made in the following analysis are that the coefficients

of viscosity and thermal conductivity are constant. In summary, the following as-

sumptions have been made: The vortex is a two-dimensional, axisymmetric, slightly-

compressible, viscously-decaying, free vortex; the far-field flow conditions and the

coefficients of viscosity and thermal conductivity are constant.
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Figure 1.4: Two-color (yellow & blue) schlieren image of the flow-field around a

vortex created under the same conditions used in the experiments of [26]. This image

corresponds to a slightly later experimental time than shown in figure 1.3. The density

variations in the separation bubble and vortex at the nose of the airfoil, as well as

the shock system, are more apparent in this image than in the preceding picture.

However, the shadowgraph in figure 1.3 more clearly captures the slipstreams present
in the flow.

1.2 Literature survey

This section discusses only previous work on viscous two-dimensional free vortices.

The reader interested in steady inviscid vortices [11], [2], driven vortex flow [23],

[6], three-dimensional compressible vortices [27], or in compressible leading-edge vor-

tices [9] is referred to the cited works and to the fairly comprehensive review written

by Bershader [7].

Mandella [25] and Mandella & Bershader [26] discuss a compressible free vortex

which is produced by shock diffraction in a shock tube. Interferometric density mea-

surements are used to develop empirical formulae for the evolution of the density
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and radial velocity in the vortex. The pressure in this vortex is measured at one

location along its trajectory. Using these data, and assuming that the radial pressure

gradient is balanced by centrifugal forces, the distributions of temperature and tan-

gential velocity in the vortex are calculated. Mandella & Bershader conclude that:

the compressible free vortex studied in their experiments is not homentropic; the ra-

dial velocities present in the vortex arise to counteract the viscous diffusion of angular

momentuma; and the primary effects of compressibility are the inward convection and

compression of rotating fluid.

Sibulkin [33] investigates the transfer of total energy within a decaying, two-

dimensional, viscous rotating flow. Low Mach number flows of both liquids and

gases are considered. Analytical solutions for the perturbations to the total energy

in a Taylor vortex [36] reference flow are given for early times in the evolution of

the vortex (when Pr = 1 and 7 = 2). Sibulkin also considers the Pr variation of

the driving terms in the perturbed energy equation. Unfortunately, in Sibulkin's

approach, velocity perturbations which are on the order of the Mach number squared

are neglected in the analysis, and so the radial velocity in the vortex is assumed to be

zero. This leads to a contradiction in the overall solution. The solution predicts that

the total mass in the vortex increases in time, yet aside from radial convection there is

no physical mechanism to cause the accretion of mass in the vortex. Additionally, with

the omission of the radial and tangential velocity perturbations Sibulkin's solutions

for the total energy are incomplete.

C01onius et al. [12] perform an analytical and numerical study of compressible free

vortices. Viscosity and heat conductivity are taken into account with the simplifying

assumption that both are constant. The Navier-Stokes equations are expanded in

powers of Re -1 to determine the evolution of the flow on a viscous and on an acoustic

time-scale. An ordinary differential equation (ODE) for the vortex's radial velocity

is found using the viscous timescale equations. Estimates of the radial velocity for

the vortex described in the experiments of Mandella & Bershader are made using the

ODE. The estimates are compared to both the empirical formulas mentioned above

3See appendix A for a further discussion of angular momentum conservation in a compressible
vortex.
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and to computational solutions of the full Navier-Stokes equations. Colonius et al.

find that the experimentally determined radial velocity is too large, and that the

empirical formulas violate the Second Law of Thermodynamics -- the net amount of

entropy generated in the flow would be negative. Additionally, the viscous timescale

equations are expanded in powers of Mach number squared (M 2) to derive a set of

equations describing compressible perturbations to an incompressible reference flow.

Solutions for the case of an Oseen vortex reference flow are determined using numerical

integration. Two different initial conditions, which are not self-similar, are used for

the calculations. In the first case the vortex initially has a constant density; in the

second case the vortex is initially homentropic. Colonius et al. find that the radial

velocity in a slightly-compressible vortex is generated by viscous effects and that the

vortex is compressed, regardless of the initial distributions of density and entropy.

1.3 Overview

i

, j

This thesis presents a set of self-similar solutions for the compressible perturbations

to an incompressible, two-dimensional, axisymmetric vortex. A discussion of the per-

turbation equations is given chapter 2 and is followed in chapter 3 by a description

of the reference flow solutions, the corresponding conserved quantities, and a dis-

cussion of how compressible free vortices may be formed. Similarity variables which

transform both the reference flow equations and the perturbation equations from par-

tial differential equations (PDE's) to ODE's are derived in chapter 4, and some of

the properties of the new equation set are discussed. In chapter 5 exact solutions

and numerical solutions for the Taylor vortex [36] temperature, density and entropy

perturbations are presented. Numerical solutions for the Oseen vortex [30] and the

Taylor vortex base flows are compared and the influence of the Prandtl number on the

temperature, density, entropy, and radial velocity distributions is also investigated.

In chapter 6 we discuss the dissipation produced in the Taylor vortex, examine the

decay of vortices from initial conditions which are not self-similar, and investigate the

nature of the radial velocity and the energy transfer in a slightly compressible vortex.

A brief summary of this thesis and some concluding remarks are given in chapter 7.
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Chapter 2

Similarity and the Navier-Stokes

Equations

,

i

2.1 Two-dimensional_ axisymmetric,

Navier-Stokes equations

For a two-dimensional, cylindrically-symmetrical fluid flow, the conservation equa-

tions for mass, radial momentum, tangential momentum, and internal energy, respec-

tively, are
Op 1 0

a--t + r_r (put) = 0, (2.1a)

Ou Ou lop v 2 2#0 rl O (ru) ] 0 [( _)lO(ru)]0-5-+ _ + - +---- + - (2.1b)par r p or [7_ j _ _" 7_ j'

oe 0e p 0 (r_) + T + . (2.1d)
P_ + P_or r or 7_ k or]

The radial coordinate r, is the distance from the center of the vortex, and t represents

time. The radial and tangential velocities u and v (respectively), as well as the

thermodynamic variables (internal energy e, pressure p, density p, and temperature T)

are functions of r and t. The bulk viscosity #_, the shear viscosity #, the thermal

13
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conductivity _, and the ratio of specific heats 7, are assumed constant in this analysis.

Additionally, the fluid under consideration is taken to be an ideal gas with equation

of state p = pRT, where R is the specific (molar) gas constant. The term T in the

energy equation is the dissipation function given by

{ [ [ ] (2.2)

The quantity T is positive definite and corresponds to the part of the viscous work

used to deform (not accelerate) a fluid particle [37].

The fluid under consideration is thermally and calorically perfect, so the internal

energy is linearly proportional to the temperature: e - CvT. Cv is the the specific

heat at constant volume, and is related to the specific heat at constant pressure Cp

by R = Cp - Cv and alternatively by 7 = Cp/C_. Using these relations, (2.1a), and

the equation of state, the internal energy equation (2.1d) can be written in terms of

the pressure

ap ap _pO,
aT + _ + --f-_(ru) = 1)T+ 1)0 ( aTh

or \ _) (2.3)

2.1.1 Simplifications

The large number of parameters and the nonlinearity of the equations shown above

makes them difficult to solve analytically. In general, analytical solutions require sub-

stantial simplification of the boundary conditions, the initial conditions, and the form

of the equations. For example, Chiocchia [11] and Ardalan et al. [2] assumed steady,

inviscid flow and applied hodograph transformations to solve ideal-fluid, compress-

ible vortex problems. Earlier, Mack [23] and Bellamy-Knights [6] investigated steady,

viscous, compressible vortex flows. In both of the latter two works, the boundary con-

ditions at the center of the vortex were simplified by driving the flow with a rotating

circular cylinder.
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In order to describe unsteady, viscous, compressible vortex flow, Colonius et al. [12]

made several simplifications to (2.1a-c) and (2.3). The initial conditions were spec-

ified at all radial locations by assuming that the flow starts in a state where the

vortex has either a constant density distribution or a constant entropy distribution.

The complexity of the equations is reduced by assuming a high Reynolds number flow

and using low Mach number perturbation expansions.

Among techniques for finding analytical solutions to compressible vortex flow, the

search for symmetry under a Lie group seems like a natural approach 1. But note that

for a free vortex in an unbounded domain the far-field pressure, density, and tem-

perature asymptotically converge to non-zero constant values. However, similarity

solutions require the system of governing equations to be invariant under transla-

tions of the thermodynamic variables. For example consider the following boundary

condition for the far-field density:

lim p = P_o,
r-+oo

where p_ is a constant. A simple test to determine if a given transformation leaves

an equation invariant is to re-write the equation in terms of the transformed variable.

If the equation reads exactly the same in the new variables, then the equation is

invariant under the transformation. The boundary condition above is invariant under

the following translation group

P'=P-P_, (2.4)

if p' can be found such that

lim p' = 0.
T----_C_

But, on substituting the transformation (2.4) into (2.1a), we see that the transfor-

mation does not leave the continuity equation invariant. An extra term containing

p_ appears in the transformed equation, but is not present in the original equation

Op' 1 0 , _ 1 a

0---_+ 7_ (put) + 7_ (p_ur) = O.

1A brief introduction to Lie groups is given in appendix B.
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Since the full Navier-Stokes equations are not invariant under translations of the

thermodynamic variables they will not admit similarity solutions for compressible free

vortex flow; this is the main reason why analytical solutions for fully-compressible

free vortices do not exist. However, as shown in chapters 3 and 4, the perturbation

equations and the incompressible reference flows presented by Colonius et al. [12] are

invariant under a three-parameter Lie group. This group allows a rich set of similarity

solutions to be found for a slightly compressible vortex. In general, similarity trans-

formations are used to decrease "the number of dimensions in a problem by combining

independent variables [8], [10]. This provides two main benefits: 1) The number of

initial or boundary conditions required to solve the problem is reduced. For the vor-

tex under consideration, the use of similarity transformations makes it unnecessary

to explicitly assign initial conditions for each flow variable at every point in the flow.

For example, if the temperature at the center of a self-similar vortex is specified at

a given time, the value of the temperature at all other radial locations (for the same

time) is fixed. 2) The PDE's describing compressible perturbations of the vortex are

reduced to ODE's which are, in this case, relatively easy to solve.

2.2 Non-dimensional forms and

perturbation expansions

The similarity solutions for a slightly compressible vortex are developed from the per-

turbation equations formulated by Colonius et al. [12]. We summarize the derivation

of these equations for completeness, and make some additional remarks concerning

the bulk viscosity, initial conditions, and boundary conditions.

2.2.1 The viscous timescale equations

Solutions of (2.1a-c) and (2.3) vary on three time scales: viscous, convective, and

acoustic. If it is assumed that the radial velocity in the vortex arises to counteract the

viscous diffusion of angular momentum, the convective and the diffusive timescales

are equivalent. The flow variables are written as functions of an acoustic timescale
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t, a slower viscous timescale r, where dr = dr�Re, and a non-dimensional radial

coordinate _. The flow quantities in (2.1a-c) and (2.3) are then expanded in terms

of the viscous time r, and the resulting expressions are collected in powers of Re -1.

The non-dimensional parameters used in the timescale expansions are

aoot v
r _= _= ,
li li ' aoo

u p p
_= , _= , _-

aoo p_ pooa 2 '

_ CpT Re- pooaooli, Pr- #Cp
a_ _ #

(2.5)

li is the core size of the vortex's initial velocity profile. Here, we define the core size

as the radial position of maximum tangential velocity. The specific heat at constant

pressure is Cp, the far-field speed of sound is aoo, and all far-field flow conditions are

denoted by the subscript c_.

Under the further assumption that _ ,,_ O(1/Re) and with _* = _Re, the viscous

timescale equations are found to be

0j5 1 0 ,
+ 7_(_ e) = 0, (2.6a)

- ^, (2.6b)0÷ r

^8_ t_*cg(_) 0 [18 ^^]p_-_T + --: -- =

--+_i _--_+ = ('y-- 1)& Tg_ TM J g_[ WJ
The equation of state has the form:

Pr _ 0_ \ -ff_ ] " (2.6d)

(2.6e)
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i ..................

Figure 2.1: Acoustic and viscous (shaded area) flow regions; a_/kt >> (uAt)l/2.

Assuming that there are no acoustic waves propagating into the region of interest,

the Re -_ timescale expansion has the effect of separating the events occurring on

an acoustic timescale from those events which occur over a longer viscous timescale.

To see this, compare the acoustic propagation of a disturbance starting at r -- 0

and the viscous diffusion of a disturbance also starting at the origin. During a time

At the acoustic disturbance travels a distance _ a_At, and the viscously diffusing

disturbance travels a distance _ (_At) 1/2, where u = #/p_. The velocity of the

acoustic wave is around am, whereas the time dependent velocity of the diffusing

disturbance is about (u/2At) 1/2. If we assume that at very early times At < u/a2_

the fluid can be treated as a continuum 2, the diffusing disturbance travels faster than

2Strictly speaking, one cannot treat the fluid as a continuum at such short times. For air at

standard atmospheric temperature and pressure u/a 2 _ 1.3 x 10-1° s. In comparison, the time
between successive collisions of the air molecules would be around 1.4 x 10 -1° s. So for At < v/a_

the gas will not reach thermal equilibrium after the disturbance's occurence. To properly model the
situation, one would have to invoke the kinetic theory of gases; for example see the work concerning
an impulsively-started plate performed by Howarth [17] and Yang & Lees [42].
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the acoustic disturbance. However, here we are only interested in times At >_ _/a_

when aooAt _ (_At) 1/2 and the acoustic wave is traveling much more rapidly than

the diffusing disturbance. For these times the viscous region of the flow is confined

to a relatively small area which contains no acoustic waves 3 (see figure 2.1). Using

li as a lengthscale, the dimensionless viscous time is given by AT = pAt/l_ and

the dimensionless acoustic time is given by At = aooAt/li. The ratio of these two

timescales is

AT _At/l_ _ 1

At -- aooAt/li - aooli - Re"

This result shows that, for Re >> 1, an event occurring over a time At seems much

longer to an observer measuring time on the acoustic timescale than it does to an

observer measuring events based on a viscous timescale. For this reason the viscous

timescale equations (2.6a-e) are stationary with respect to the acoustic time t (there

are no dt derivatives) and the relevant velocity scale for Re is a_.

Another approximation made in the derivation of (2.6b, d) is that we have assumed

that the terms involving (/_ - 2p/3) in (2.1b) and (2.3) are O(1/Re 2) or smaller. For

dilute monatomic gases (#_/# _ 0) and air (#v/# _ 0.6) [37] this assumption is

valid. However, for gases such as C02 (#_/# ._ 1000) and//2 (#v/# _ 32) one must

be careful in applying the approximation.

Using the viscous timescale equations all of the necessary boundary conditions

can be specified to O(1/Re). Since the flow is symmetrical about the origin, the

tangential velocity, radial velocity, and heat flux vanish at the center of the vortex.

Therefore, as can be shown with (2.6b), the radial pressure gradient must be zero at

the origin. Since both the temperature and pressure gradients are zero at the center

of the vortex, the ideal gas law requires the density gradient to be zero at P -- 0 as

well. The flow domain is unbounded, and we will assume that both components of

velocity vanish in the far-field. The pressure, temperature, and density are assumed

to approach the constant values poo, Too, and poo, respectively, as P --+ c_.

3Note that Lagerstrom [22], Stewartson [34], Howarth [17], and Van Dyke [39] have investigated

flows in which both acoustic waves and heat/viscous diffusion are simultaneously present.
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2.2.2 The low Mach number approximation

To derive the equations for the compressible perturbations to an incompressible

vortex, the viscous timescale equations are first re-written using the following non-

dimensional parameters

r __ vmt v

Vm

u P P - Poo=--, 15-
Poo '

T l_e- poovmli Pr #Cp

vm
M= --, r =--_ =--.

a_ Re Re

(2.7)

Vm is a reference velocity -- the maximum tangential velocity in the vortex's initial

velocity profile. The term 15 is similar to the standard definition of the dynamic

pressure coefficient in aerodynamics [19] and represents the normalized deviation of

the local pressure p from the far-field pressure p_. Note that the transformation from

p to 15is similar to the example transformation from pro p' shown in (2.4) above, and

is simply a translation in pressure.

The equations which are obtained after applying the change of variables in (2.7)

are expanded in powers of M 2 with the Rayleigh-Janzen expansion 4. In this method

the dependent flow variables are approximated as

::i• ¸ /

•:i!?•ili

?

]-'- fro + M2L + O(M4), (2.s)

4This expansion has been used by many researchers for examining low Mach number compressible
flow (Van Dyke [38], Lagerstrom [22]). Several combustion studies [28], [24], use a slightly modified
form of (2.8) in which the expansion parameter is 7M 2. A justification for expanding the flow
variables in terms of M 2, rather than in odd powers of M, is given by Mahalingam [24]. He shows
that as M -+ 0, M 2 appears as a small parameter in the equations for the relative changes in velocity,
pressure, density, and temperature in a one dimensional inviscid flow.



i

i,

¸¸¸%:i!//•',

CHAPTER 2. SIMILARITY AND THE NAVIER-STOKES EQUATIONS 21

where f may represent any of the dependent flow variables. Terms of O(1) are

collected to yield equations describing an incompressible reference flow, and O(M 2)

terms are collected to give expressions for the compressible perturbations to the refer-

ence flow. The reference flow terms are designated with a subscript 0 and the O(M 2)

perturbations are denoted by the subscript 1.

In the reference flow the radial velocity is necessarily zero 72o = 0, the density and

temperature are uniform Po = 2_o = 1, the pressure gradient balances the centrifugal

forces created by the tangential velocity, and the tangential velocity is governed by a

diffusion equation

o/50
= --:-, (2.9a)

O_ r

0_0 0[10 __]07 - 0r 7N " (2.9b)

The corresponding boundary conditions are

_o = 0,_=0 O/5--2°=0,
(2.10a)

0_

and

{ _o --+ 0,
--+ oc (2.lOb)

/50-+0.

To O(M 2) the equations for conservation of mass, radial momentum, tangential mo-

mentum, energy, and the equation of state, respectively, are

0pl 1 0 ,__,,

0-7 + 7-_ (ru_) = O, (2.11a)

OPl Pl _2 2VlVo

0r - _ +---_' (2.11b)

_0_o 0_ _,O_o _o_ O [10 __ 1
Pl-_T "Jr- "-_-T -t- 721-_ -1- _ --07 _ [ J_-_(rVl) , (2.11c)
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07 + (_i) = 7(7 - 1)\ o_ + P__ o_ \ o_ ]T

"y_o= _ + T_,

(2.11d)

(2.12)

where _ = _l/_e. Note that (2.12) implies that, for a slightly compressible vortex,

the O(M 2) density and temperature perturbations are of the same order of magnitude

as the O(1) pressure variation.

Using (2.11a, d), and (2.12) we can derive a partial differential equation for the

evolution of T1 in terms of the known reference flow velocity Vo and pressure 16o

0T1 1 0 _7:0T1_ [(0_o _)2 a15o]
07 _PrOY \ 0_J --(3'-1) [\0y Vo + 07]" (2.13)

The equation set (2.11a-c), (2.12), and (2.13) will be used to to describe the evolution

of the O(M 2) quantities; the related boundary conditions are

_=0

ul=0, vl=0,

016_ a_
o-7 = 0, o-7= 0, (2.14a)

and

I _1 "--)" O, "01 ---} O,

r-'-F(X) 161 --_0, T1--+0, (2.14b)

#_ _0.

After the reference flow variables 150 and _o are determined, one can solve for all of

the O(M 2) perturbation quantities.
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Chapter 3

The Reference Flow

One can completely determine the reference flow pressure and velocity from knowledge

of the vorticity &0. Therefore, we begin this chapter by discussing the reference flow

vorticity equation. In the process of solving this equation we will find a group which

leaves it invariant and identify a set of conserved quantities for the solutions.

3.1 Derivation

Taking the curl of (2.9b) we obtain an equation for the diffusion of vorticity

where

a&0_ 1 0 f_0&0"_

_0= = e_0). (3.2)

Here we assume that &o is bounded at _ = 0, and that &o --+ 0 as 7=--+ cx_.

Based on the form of the integral invariants involved in self-similar solutions of the

one-dimensional heat equation [5], we expect the following area-integrated, positive-

integer moments of vorticity to be conserved

Aj = 27r f0 _ fJ&0?d?. (3.3)

23
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Consider the invariance of (3.1) and (3.3) under dilations in _0, [, and % and

translation in 7-

_' = ea_, r' = e%- + (e b - 1)ri, w0-' = eCS_o.

The invariance of (3.1) and (3.3) requires that b = 2a and c = -(j + 2)a. The group

is

r' = ea_, 7-_ e 2a7" + (e 2a 1)_-i, -' = e-(J+2)%30,-- _ 020 (3.4)

and a = 0 is the identity element of the transformation. The associated characteristic

equations are
d_ dr

Note that this group has three parameters:

variables are
_2

77-

and

d_o

4(r + ri)'

(3.5)

The resulting similarity

(3.6)

(3.7)

Substituting these group invariants into (3.1), we obtain an ordinary differential equa-

tion in the variable

d2_2 d_ (J +
2,n =0, (3.8)

We require that _ is bounded at z/ -- 0, and that _-+ 0 as r/--+ co. Bateman [4]

shows that the two-dimensional diffusion equation is satisfied by a separated solution

in the variables _- and 77, and his solution method also leads to (3.8). For arbitrary

values of j, he gives the general solution of (3.8) as

_(r/) = (_i exp('r/)lVI(-2; 1; r/), (3.9)

where Cj is a constant and M(-_; 1; 77) is a confluent hypergeometric function. Note

that an overbar and an upright font are used to distinguish this function from the

previously defined Mach number M.
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Using (3.6) and (3.7) the integral (3.3) becomes

Aj = 4(J+2)/2_r f0 _ _]J/2t_(7)dT,

where j is a positive integer. Using (3.9) in this integral we find that Aj is unbounded

for odd values of j (see Appendix C). Therefore, we will only consider even values

of j. Taking j = 2m, the confluent hypergeometric function reduces to the Laguerre

polynomial

e,7 d mIVi(-m; 1" 7) = Lm(7) - m! dr] m (7me-v) = m!(-7)k' = k),k=0

(3.11)

This solution for _(7) agrees with the vortex solutions found by de Neufville [13]. For

reference, the first five Laguerre polynomials are

1 2) L3 = 1Lo:I, L1:1-7, L2:_(72-47+ , -_(73-972+187-6),

1 4
L4 = _(7 - 1673 + 7272 - 967+ 24).

In the even-integer case the conserved quantity ._j converges to a finite value for every

m. Taking Aj -+ Am for j = 2m, (3.3) reduces to

Am = 27r _oo r2mw0rdr. (3.12)

Each Am is the 2rn th area-moment of the rn th vorticity solution. As pointed out by

de Neufville [13], when m = 0 the total circulation of the fluid is invariant and when

m = 1 the total angular momentum of the flow .hA is invariant. These two invariants

are a subset of the more general expression for the reference flow integral invariants

(3.12) developed here. When m = 0, Am = A0, which is the total circulation of the

reference flow, and for m = 1 the integral invariant is related to the total angular

momentum A1 = -2A//.

, '. _
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In (3.9)let C'j -+ Cm for j = 2m. The constant Cm is related to the integral

invariant Am and is found by evaluating (3.10). Using (3.9) and (3.11), we can re-

write (3.10) in the following form

4(m+l)TrCm fo _ dmAm -- m! r/rod-_ (r/me-V) dr/. (3.13)

e

Integrating this equation by parts several times and then applying mathematical

induction to the results, we can reduce Am to the following expression

_0 _
Am = (-1)m4(m+l)rrCm r/me-ndr/. (3.14)

The integral in (3.14) is the Gamma function [1], and for integer powers of m, Cm

and Am are related in the following way,

Am

Cm = (_l)m4(m+l)(m!)_ r. (3.15)

Using(3.7), (3.9), and (3.11) the solution for the reference flow vorticity can be written

as

Cme-_Lm(r/)

= + (3.16)

where Cm/r (m+l) corresponds to the amplitude (at _ = 0) of the m th self-similar

vorticity solution (when r = 0). The velocity and pressure corresponding to (3.16)

are given in the following section.

3.2 Physical description of reference flow solutions

Each eigenfunction (solution for c_0) satisfying (3.1) corresponds to a different radial

profile of tangential velocity and pressure. Using (3.4) in (3.2) and (2.93), we can

find the transformation group for Vo and i60

-' -' = e--2(2m+l)apo (3.17)VO _- e-(2m+l)af)o, PO
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These transformations leave the boundary conditions (2.10a,b) invariant, and yield

the following self-similar forms

v(a) = _0(_+ _i)(m+1/2),

and

_'(a) = _o(_-+ _-d(_m+_), (3.18b)

and the corresponding boundary conditions

V=0,
_/=0 (3.19a)

dP
r/7-- = O,

dT?

V--,O,_7--+ co (3.19b)
P-+0.

For each eigenvalue m, a completely self-similar solution can be found for the reference

flow. The mathematical form of each solution may be used to describe the physical

nature of the flow it represents.

3.2.1 Tangential velocity

Integrating (3.2), one obtains a solution for the reference flow velocity

{ __2 [1 - exp(-rl)], m = 0rio = 2Cm , , (3.20)

_T +---_/)_ expt-r]) [Lm(rl) -- Lm-107)], m > 1.

When (m > 1), the term in square brackets in (3.20) is a polynomial which has one

root at 77= 0 and (m - 1) roots for r/> 0. Therefore, the tangential velocity for the

mth eigenvalue will change direction (m- 1) times as one varies _ from the origin
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to _ --+ ce (e.g. figure 3.1b). Self-similar vortices corresponding to values of m > 2,

would consist of (m - 1) concentric shear layers.

3.2.2 Pressure

From (2.9a) we see that c916o/0_ _> 0. Therefore, t60 increases monotonically from its

minimum value, at the center of the vortex (_ = 0), to 160 = 0, as _ -+ oo. Using

(3.20) in (2.9a) gives 160

i_ " : i

"V

j_oo _2 2
160 = - -_-d_ = -CA _ exp(-2_)[Lm(_) - Lm-l(7)] 2

7" 2(7" 4T_ re+l) 72 d7. (3.21)

The pressure for the first few eigenvalues is

Co2 [1 + exp(-27)- 2 exp(-7)

(_+ _) L 2_

C_ exp(-2_])

-_ 8 + '

C_exp(-27) [74 573 11772
2-_TT-_ [7-2 36 + 24

+ E1(7) -- E1(27)] ,
m=0

m=l

m=2

24 + ' m=3,

(3.22)

where E1 (77) is the exponential integral

E1(7) = f°° _d7 .

The radial distributions of vorticity, tangential velocity, and pressure are plotted

in figure 3.1(a-c) for the first three eigenvalues m, with Cm - 1, _- = 0, and 7-i -- 1.

Notice that &0 = 1 at _ = 0 for all three solutions shown. However, as m increases

both the corresponding maximum tangential velocity, and maximum pressure drop

decrease.
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Figure 3.1: Radial distributions of (a) vorticity c_0, (b) tangential velocity 90, and (c)

pressure t50, for Cm = 1, T = 0, and _-i = 1 --, m = 0; .... , m = 1; --.--, m = 2.

3.2.3 Decay rates

The solutions of the reference flow vorticity (3.16), tangential velocity (3.20), and

pressure (3.21) can each be factored into two parts. The first part corresponds to an

inverse power of % and the second part is purely a function of r]. The r]-dependent

part of each solution governs the spreading of its radial profile by viscous diffusion,

whereas the other factor governs the solution's time rate of decay.

For arbitrary values of m, the vorticity, tangential velocity, and pressure have the

following inverse time dependence

(Oo ocr -(re+l), Vo ocr -(m+1/2), 15o ec r -(2m+1). (3.23a, b, c)

Note that the incompressible pressure decays like 150 _" vg.

In §2.2 the governing equations were scaled by li and Vm, which are determined

from the initial velocity profile in a vortex. However, the core size and maximum
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tangential velocity in a vortex are functions of time. As a self-similar incompressible

vortex decays, its core size I (radial location of maximum tangential velocity), grows

at a rate governed by viscous diffusion: / o( _-½. Using this lengthscale and the

time dependent maximum tangential velocity Vm(T), we can show that the Reynolds

number Re* and the Mach number M*, at the core radius of a vortex vary in time

as

/{e* o( __-m and M* c< T -(re+U2). (3.24a, b)

Interestingly, for m = 0 both the circulation (based on maximum tangential velocity

Vm and core size l) and /{e* are constant. If m > 0, both /_e* and M* decrease in

time -- with the Mach number decreasing more rapidly than the Reynolds number.

This time-dependent behavior is consistent with the underlying assumption that the

Mach number of the vortex remains small.

In the next section we will show that the inverse time dependence of the reference

flow quantities has important implications for the form of the solutions we can use to

model a self-similar vortex.

3.2.4 Superposed solutions

The Laguerre polynomials are a complete set of orthogonal eigenfunctions, and (3.1)

is a linear equation. Therefore, an infinite series of Laguerre polynomials could be

used to construct a description of any arbitrary vortex reference flow with w0 -+ 0 as

£ -+ c_. However, as de Neufville [13] notes, the convergence of these polynomials

is slow, and in order to approximate a particular vortex, a very large number of

terms may be required. In the present work superposed solutions will be avoided,

not because of their slow convergence properties, but because such solutions are not

self-similar. In order to find similarity solutions to the O(M 2) perturbation equations

(2.11a-c), (2.12), and (2.13), the reference flow solutions (which form the forcing

terms in these equations) must be self-similar.

To see that superposed solutions are not self-similar, let a superscript enclosed in

parentheses denote the m th vorticity solution and consider the sum of the ml th and
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the m2 th vorticity solutions

(ml) co_m2) C,_le-nLml (77)COO "-I-
(r +

Multiplying each term by (r + ri) (m1+1) we get

Cm2e-_Lm2 (r/) (3.25)
+ (r + ri)(m2+1) "

= Cmle-ULml(rl)

+ Cm2e-'TLm2(r/)(r + ri) (ml-m2) . (3.26)

If the vorticity distribution in (3.26) is self-similar, all terms on the right hand side of

the equation must be a function of r1 alone. This is only true if ml = m2; therefore,

superpositions of self-similar solutions are not self-similar.

From a physical standpoint, a time-dependent quantity is self-similar if the spatial

distributions of the quantity, at different instants in time, can be obtained from each

other by the same group transformation. Each term (eigenfunction) in the solution of

a vortex composed of superposed eigenfunctions will decay at its own, distinct, rate.

The parts of the solution corresponding to large eigenvalues will become negligible

long before the terms corresponding to small eigenvalues have decayed.

3.3 The Oseen vortex, the Taylor vortex

and Mandella's vortex

The similarity equations we will develop in chapter 4 are valid for any eigenvalue m.

However, in §§5.1 and 5.2 we will focus on the solutions for the Oseen vortex (m = 0)

and the Taylor vortex (m - 1). This section describes these two types of vortex, and

qualitatively explores the formation of the vortex studied by Mandella [25].

The reference flow solution for m = 0 is the classical Oseen vortex [30], which

is sometimes also called the Lamb vortex [20], or the Lamb-Oseen vortex [31],[15].

The solution when m -- 1 is Taylor's vortex [36] and has also been referred to as a



• iI

:!i_::_II::/:_!

iii:i_!/:i_'i

CHAPTER 3. THE REFERENCE FLOW 33

"Taylor swirl" i [12].• Radial profiles of vorticity, tangential velocity, and pressure are

given for both vortex solutions in figures 3.1a-c. Note that, the tangential velocity

profiles of both the Oseen vortex and the Taylor vortex have v0 of the same sign

(direction) at all values of _. However, as _=-+ ee the Oseen vortex has an infinite

total angular momentum, and a finite circulation; the Taylor vortex has a finite total

angular momentum and zero circulation. Also, note that the reference flow solutions

for all higher order eigenvalues m _> 2 have zero total angular momentum, and zero

circulation for _ -+ ce [13].

The Oseen vortex is often used to model the viscous decay of vortex pairs such as

those found far downstream from the wingtips of an airplane in steady, level flight.

Assuming the vortices have the same circulation strength, but rotate in opposite

directions, they move along parallel linear paths. Each member of such a vortex pair

contains an infinite amount of angular momentum about its own center. However,

the total angular momentum along a symmetry plane, equidistant from each vortex,

and parallel to their motion, is zero -- the circulation and angular momentum of each

vortex in the pair are equal in magnitude, but opposite in sign. For the Oseen vortex

/_e is constant; see equation (3.24a).

Now consider the vortex studied by Mandella [25],[26]. As shown in figures 3.2-3.3,

this vortex is created by shock diffraction. A shock of strength Ms _ 1.8 travels from

left to right and passes over an airfoil. The airfoil has an angle of attack of 30 ° , and

a thickness-to-chord ratio of 18_. How can the resulting flow be described?

Currently there do not seem to be any reports, either computational or experi-

mental, which give the vorticity, velocity, density, and pressure fields present in such

a flow 2. However, many features of the flow may be identified from the schemat-

ics shown on the left side of figure 3.2. In these diagrams the heavy lines represent

shocks, the thinner lines represent contact surfaces, the direction of propagation of

1The use of this expression may have arisen to prevent confusion with the three dimensional

vortices found in circular Taylor-Couette flow [14]. Such vortices are also often called Taylor vortices.
2Moon & Yee [29] use a TVD scheme to numerically determine the pressure and density of the flow

for the early stages of Mandella & Bershader's experiment [26]. Unfortunately, their computations
do not capture the complete formation of the free vortex.
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each shock is marked with arrows, and vorticity of positive and negative sign is de-

noted by + and -, respectively. The accompanying holographic interferograms on

the right hand side of figure 3.2 were provided courtesy of Dr. M. J. Mandella.

The incoming shock first contacts the airfoil near the airfoil's leading-edge. A

reflected shock is produced which propagates away from the airfoil in a circular pattern

(figure 3.2a). The incoming shock is split (into two parts) by the airfoil, forming an

upper shock, which travels Over the top surface of the airfoil, and a lower shock, which

moves along the airfoil's bottom surface. The circular, reflected shock is connected to

the upper and lower shocks by Mach stem configurations. The upper shock diffracts

and expands over the leading-edge of the airfoil and so becomes curved and weaker. As

a result, the upper shock slows with respect to the lower shock, which is compressed

and strengthened due to the airfoil's high angle of attack. The lower shock reaches

the sharp trailing-edge of the airfoil before the upper shock and diffracts around the

tip. The diffraction produces a vortex of strong, predominately-positive (counter-

clockwise) vorticity (figure 3.2b). The curved upper shock and the small boundary

layer on the upper surface of the airfoil both create negative (clockwise) vorticity.

When the diffracted lower shock (now curving around to the upper surface of the

airfoil) and the upper shock collide, the resulting shock structure continues to move

from left to right. This shock structure then passes through the vortex at the airfoil's

trailing-edge, causing the vortex to shed from the airfoil and convect with the free-

stream flow. In this free-vortex formation process, the strong, positive vorticity at the

tail of the airfoil is encircled by negative vorticity of smaller magnitude (figure 3.2c).

The schematic is highly simplified, and figure 3.3 shows that some elements of

the real flow have been omitted: 1) The formation of a second, weaker vortex by

shock diffraction at the leading-edge of the airfoil. This second vortex remains at-

tached at the airfoil's nose by a slip-line and seems to be accompanied by a small

separation bubble. 2) A series of slip-lines or contact surfaces are present near the

free vortex [26]. 3) When the upper and lower shocks collide near the trailing-edge of

the airfoil, a focusing effect seems to occur. This focusing effect causes the resulting

shock configuration to resemble the three-shock intersection structures reported by

Sturtevant & Kulkarny [32]. This structure is visible in figure 3.3 as a triangular
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(c)

............ . : ......................_:_:_:_:i;ii_!.........

Figure 3.2: Three stages in the creation of a free two-dimensional vortex: (a) incident

and reflected shocks, (b) diffraction around the airfoil's trailing-edge, and (c) free

convection of a vortex which contains both positive and negative vorticity.
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Figure 3.3: Shadowgraph (left) and yellow & blue two-color schlieren (right) pictures

showing the formation of Mandella's vortex. The sequence is ordered from left to

right and top to bottom.
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system of contact surfaces and shocks (located slightly above and to the right of the

free vortex).

Despite their simplicity, the schematics in figure 3.2 capture one of the main fen-

tures involved in the formation of a free vortex by shock diffraction: from physical

reasoning, we expect such a vortex to contain vorticity of both positive and nega-

rive sign. This idea motivates the examination of self-similar solutions for the Taylor

vortex. Taylor's vortex (m = 1), corresponds to the lowest and most stable eigen-

function which satisfies the reference flow and possesses vorticity of both signs. For

this reason, we will focus on analytical solutions for compressible perturbations to an

incompressible Taylor vortex in §5.1.

However, remember from § 1.1 that the flow in Mandella's experiments is fairly

complex, and that there may be acoustic waves present in the vicinity of the vortex.

Again, the slightly-compressible vortex solutions developed in this thesis correspond

to an idealized flow situation in which there are no acoustic waves and the far-field

flow conditions are constant. Here, the Oseen vortex and the Taylor vortex are

used as the base flows for the development of weakly-compressible vortex solutions.

In a strict mathematical sense, there are shortcomings to representing a lone, two

dimensional vortex with either the Oseen vortex or the Taylor vortex. If one assumes

that the flow domain is completely unbounded and calculates the total circulation

and the total angular momentum by performing integrations for 0 < _ < c_, then:

1) Oseen's vortex has a non-zero total circulation but an infinite amount of total

angular momentum -- it would require an infinite amount of energy to create such

a vortex, 2) Taylor's vortex has a finite total angular momentum, but zero total

circulation -- such a vortex could not be produced by a lifting body, such as an

airfoil, because it would necessarily shed vortices with nonzero total circulation 3. In

3The lift on the airfoil and the distribution of circulation in the vortices in Mandella's experiments

has not been fully determined. As demonstrated by Taneda [35], the correlation between the lift

on an impulsively started body and the presence of an isolated starting vortex is complex. He has

shown that an impulsively started elliptical cylinder (2 : 1 aspect ratio), at angles of attack of 20 °

and 45 °, experiences two peaks in lift magnitude. The first peak is associated with the development

of a boundary layer and occurs in the absence of a visible starting vortex; the second peak arises

just after the shedding of isolated vortices from both the leading- and trailing-edges of the body.

. :, :'
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reality, these vortex solutions are only rough approximations of vortices existing in

flows which can never be truly unbounded.

These facts should be kept in mind when using the slightly-compressible vortex

solutions developed in chapter 5. In the next chapter, the reference flow solutions are

used to derive a set of equations which govern the self-similar forms of the compressible

perturbations.

:i__/':i:
r
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Chapter 4

Similarity Forms

In §3.1 it is shown that the reference flow is invariant under the three-parameter

group a, _-i, and j. Since the reference flow involves only even values of the integer

j, j = 2m, we can alternatively use m as the third group parameter. It will now

be shown that the compressible perturbation equations (2.11a-c), (2.12-2.13) and

the corresponding boundary conditions (2.14a-b) are also invariant under this three-

parameter group. We will use this group to find invariant forms of the O(M 2) flow

variables and the governing perturbation equations.

ii:_I: :

:_: i_

4.1 Perturbation variables

The similarity forms of the O(M 2) compressible perturbation quantities are found

by substituting the reference flow terms (3.7) and (3.18a-b) into the compressible

equations (2.11a-c), and (2.12-2.13) and looking for a transformation group which

leaves them invariant. We also require that this group yield the similarity variable

7. Therefore, the O(M 2) similarity solutions will have an _ and _- dependence of the

39
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same form as the O(1) similarity solutions. The relevant group is

7=' = e_, T' = e2%- + (e 2_ - 1)Ti, /5'1 ---- e-2(2m+l)a/51,

u1-*' =e- (4m+3)a_

-, e-3(2m+1)a_1,V 1

(4.1)

3"=7, Pr' = Pr.

The gas properties 7 and Pr are treated as invariant quantities, and are assumed

constant for this analysis. The characteristic equations of this group are

d7= d_- _ dr51 d_

r 2(T + _-i) 2(2m + 1)/51 (4m + 3)fi_

dt51 d_l dT1
= (4.2)

4(2m+ 1)_1 3(2m+ 1)_ = -2(2m + 1)_'

and are used to find similarity variables corresponding to the O(M 2) perturbed quan-

tities

_(_) = _(_ + _)(_m+_),

Z(_) = _,(_ + _)(_+_),

_(_)

¢(_) = _(_ + _)(_+_/_)

(4.3a-e)

¢(_) = _(_ + _)(_+_).
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4.1.1 Decay rates

The decay rates of the O(M 2) terms can be determined by inspection of (4.3a-e)

551 ec __-(2m+1), _51c< T-(2"_+1), _ o< T -(2re+a/2), 4.4a, b, c)

Vl c< 7--(3m+3/2), 151c< 7 -(4m+2). (4.4d, e)

Comparing (4.4a-e) with (3.23a-c) we see that 551 and/51 decay at the same rate as

the reference flow pressure (3.23c); this result could have also been inferred from the

O(M 2) ideal gas law (2.12). The other O(M _) terms decay faster than the reference

flow terms because the Mach number of the vortex decreases in time (3.24b), and so

the compressibility of the vortex also decreases. When m _> 1, _1 and 151 decay more

rapidly than the other O(M 2) variables.

ii,!_

4.2 Perturbed entropy, dissipation, and vorticity

The solutions to (2.11a-c) and (2.12-2.13), form a minimum set of equations which

can be used to completely describe the state of a compressible vortex -- to O(M2).

However, we can learn more about compressible vortices by explicitly investigating the

entropy, dissipation, and vorticity within them. For this reason, we derive the equa-

tions which govern these quantities before giving the invariant forms of the O(M 2)

perturbation equations (§4.3).

!.,

i:

4.2.1 Entropy and dissipation

Using the Gibbs equation [37], the entropy (here in non-dimensional form) is related

to the pressure and density in an ideal gas as follows:

Cp - In _ -ln . (4.5)
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After writing p and p in non-dimensional form using (2.7), expanding (4.5) in a

Rayleigh-Janzen expansion (2.8), and then approximating logarithmic terms as

1

ln(x) = (x- 1) + _(x - 1) 2 +--.,

[1] one can show [12]:

= (15o-/51)M 2 + O(M4).

(0 < x < 2), (4.6)

(4.7)

Hence, the O(1) entropy variation of the reference flow is s0 = 0 which is expected

since T0 and/5o are both constant. The O(M 2) compressible entropy perturbation is

(4.8)

To find the dissipation, we take the total derivative of _, which is, to O(M2):

D_I 0_1 0_0

D_- - 0r +/_e_ -_-. (4.9)

=0

Therefore, differentiating (4.5) by _- gives the total derivative of the entropy, to O (M2),

as

D_I 0_1 0_0 0_1

DT -- 0_- -- 0T 0_" (4.10)

Using (2.11a), (2.12), and (2.13), the local rate of change of entropy is given by [12]

a--; = - 1) +----\ O_ FPr O_ O_ ]" (4.11)

The first term on the right hand side of (4.11) is proportional to the rate of entropy

production by viscous dissipation, and the second term is proportional to the rate of

change of entropy due to heat conduction. In §6.4 we will use analytical solutions Of

the self-similar equations to investigate the relative magnitude of the terms in this

equation.

Before proceeding, note that (4.11) has an interesting consequence for the total

heat flux in a slightly-compressible vortex. Using the fact that _1 --_ 0 in the far-field,
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together with the O(1) solutions for _0 (3.20), one can show that the divergence of

the heat flux into or out of the vortex in the far-field is zero,

lim 1_0 _:0TI_ = 0.

Integrating this equation with respect to _ gives

_0 1
= ¢,

where C is an arbitrary constant. In order for this relation to hold 2rl will vary as

2rl _-, g In(X)

in the far-field.

is zero,

But, T1 _ 0 for _ -+ oo, therefore C = 0, and the far-field heat flux

lim _02rl = 0.
_-_ 0_

Because of this, the net heat flux within the vortex is also zero

t, -g-] = O.

Regardless of whether or not a weakly compressible vortex is self-similar, if the overall

temperature in the core of the vortex increases, the temperature rise is not caused by

the conduction of heat from the far-field into the vortex. Instead, it is only caused by

viscous dissipation and pressure work 1. To state this in another way, the form of the

perturbation equations limits the solutions to those cases for which one asymptotically

obtains a uniform temperature (as the vortex decays) without the "feed" of heat from

infinity.

1The total viscous work in a flow can be split into a part which is responsible for deforming fluid

particles (the dissipation) and second part which accelerates fluid particles [37]. The acceleration

part of the viscous work affects the kinetic energy in the flow, but does not increase the temperature
of the fluid; see §6.2.
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4.2.2 Vorticity

Having determined the form of the O(1) tangential velocity in §3.2 we can now derive

an equation for the O(M 2) vorticity. Expanding the tangential velocity in a Rayleigh-

Janzen expansion (2.8), we get

= v0 -_-M2Vl + O(M4).

Taking the curl of (4.12) gives

(4.12)

: Wo + M2_l + O(M4), (4.13)

where

10

wl - _ 0_ (_1)- (4.14)

Upon taking of the curl of (2.11c) and also using (2.11a) we find the equation gov-

erning the O(M 2) vorticity

8&1 18(_c9(o1_ _ (0_1 )0&0 O&0 (4.15)

4.2.3 Similarity forms

The similarity variables for the entropy, dissipation, and vorticity are

((7) = _,(_+ _,)(2m+,),

081 (T -]- Ti) 2(m+1) ,5(7) - &_

_(_) = co,(7+ _-i)(3m+2),

(4.16a-c)

respectively. The corresponding decay rates are

'_1 CX: T "(2rn+l) , Oq'_lOq'--_(:X: T -2(re+l) , _.O1 (:X: r -(3ra+2), (4.17a, b, c)
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and we see that the entropy variation decays at the same rate as TI, ill, and 15o.

In the following subsection the self-similar forms of each of the O(M 2) equations,

including (4.8), (4.11), and (4.15) will be derived.

4.3 Perturbation equations

Substituting the similarity forms of the perturbation variables (4.3a-e) into equations

(2.11a-c), (2.12), and (2.13), the partial differential equations describing the 0 (M 2)

perturbations are reduced to the following set of ordinary differential equations:

d _ d/_

,,d-:(_) = _ + (2m+ 1)_, (4.18a)

2v_ ¢ = ZV2 + 2¢V,

r]_-_ 2 + (r/+ 1) + 3(m + 5) - _ ¢ = - - m_V,

r/ dec_ + O1Pr + 1) da

/_ = 71P - a,

(4.18b)

(4.18c)

(4.18d)

+ (2m + 1)or
Pr dr/2 Pr drl

= (7-1)(2m+l)P+--_-- fl-_?t] j

Transforming (2.14a) and (2.14b), gives the boundary conditions for (4.18a-e):

(4.18e)

½de

_=o, ¢=0, _ _=o,

= 0 ½da ____=o, ,7½ =0,

(4.19a)

and

t_ -+ O,
(4.19b)
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The self-similar forms of the equations for the O(M 2) density (4.8), dissipation

(4.11), and vorticity (4.15) are

( = -(7- 1)'P + G, (4.20a)

. r]:/
(4.20b)

and

d27:;u d_i:7

+ (r]+ + (3m+ 2)w

+ 77112(c_ - r]'/2,5>) df_

(4.20c)

The homogeneous parts of (4.18e) and (4.20c) have the same form as the similarity

equation for the O(1) vorticity (3.8). Therefore, their homogeneous solutions can be

written immediately as

Gh =Bm exp(-r]:)L2m(rh) (4.21)

and

VOh = Wm exp(--T])Lam+: (r]), (4.22)

where rh - rlPr, Bm and Wm are arbitrary constants, and the subscript h refers to the

homogeneous part of each solution. Likewise, the homogeneous part of the equation

for the O(M 2) tangential velocity (2.11c) and the O(1) tangential velocity equation

(2.9b) have the same form. Using (2.9b), (3.18a), and (4.18c) one can show that the

forms of Ch and V(_- + ri) (m+1/2) will be somewhat alike:

Ch = (3m + 1)Qmexp(-r]), [L3m+:(r]) -- L3m(r])] , (4.23)
r]:

where Qm is an arbitrary constant.
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4.3.1 The behavior of the solutions

Before giving solutions to (4.18a-e) for the Oseen vortex (m = 0) and the Taylor vor-

tex (m = 1) reference flows, we will use the forms of these equations to reveal some of

the physical characteristics of slightly-compressible, self-similar vortices. Specifically,

we will examine if these vortices can be isentropic, and briefly look at the Prandtl

number dependence of the solutions.

The similarity forms of the reference flow quantities constitute some of the forcing

terms of (4.18a-e). The reference flow terms are functions of the viscous timescale

T, and are independent of the Prandtl number. Pr appears explicitly only in (4.18e)

-- the equation for (7. However, cr and/_ are directly related by (4.18d), and either

a or ¢] appear as part of the forcing terms in each equation of (4.18a-e). Therefore,

all of the O(M 2) terms wil! vary with both the viscous timescale % and the Prandtl

number as expected (§1).

Can the compressible self-similar vortex be homentropic? In the homentropic

case, sl = ( = 0. If this is true, then (4.20a) requires

(7 - 1)7' = a. (4.24)

Using this relation to replace a with P in (4.18e), we see that 7) must depend on Pr in

order for the vortex to be homentropic. However, since the base flow is incompressible,

the base flow pressure must be independent of Pr. Therefore, a slightly-compressible,

self-similar vortex cannot be homentropic 2. The Pr dependence of the solutions is

further explored in §§5.1.2 and 5.1.3.

In the next section (4.18-4.23) are used to find self-similar solutions for the O(M 2)

compressible perturbations to both an incompressible Oseen vortex and an incom-

pressible Taylor vortex.

2If a slightly-compressible vortex is not self-similar, one can specify an initial condition where
the vortex is homentropic [12]. However, this condition is only valid at a single instant in time.
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Chapter 5

Solutions

5.1 Analytical solutions for the slightly-

compressible Taylor vortex

For m = 1, (3.16), (3.20), and (3.22), can be used to reduce (4.18e) to the following

relation

d2cr da
rll_--_ + (rh + 1) + 3a

_r/
__ _C_(7.1)exp(_2_/)[_72 + 3] ' (5.1)

where, again, we take rh -- rlPr. Analytical solutions to (5.1) for a general value of Pr

can be found using the Method of Frobenius; the method is outlined in Babister [3].

The particular solution is

ap = -C2(7- 1)Th exp(-2rh/Pr) Do + 2Dlrh + 4D2r/2 + _ D,(2rh) n ,
r_----3

(5.2)

48
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where

3

Do = g,

2Pr

15Pr - 44Pr + 32)D2 = \ f_4-_r 2 ,

D7%

(4 - 2Pr)Dn_2 + [(2n + 6)Pr 2 - 4Pr(2n + 1)] Dn-1

4(n + 1)2Pr 2

(5.3)

Using (4.21) we find that the homogeneous part of the solution for m = 1 is

ah = --_ exp(--rh)(r/_- 4rh + 2), (5.4)

and the complete solution is a = ah + ap. Using (3.22), (4.18d) and (4.20a), fl and

¢ are easily found. However, solving equations (4.18a-c) for a, ¢, and ¢ is difficult

because (5.2) contains a slowly converging series (see §5.1.2).

Luckily, when Pr = 1, it is relatively easy to find simple closed-form solutions for

most of the O(M _) terms. In this case r; = rh, and the particular solution to (5.1) is

C2(v - 1) exp(-2r/)(2r/+ 1). (5.5)
%- 4

The total solution for cr is given by

C_(7- 1) B1

or= 4 exp(-2r/)(2r; + 1) + -_- exp(-r;) (r;2 - 4r; + 2). (5.6)

Using this result and (3.22) in (4.18d) and (4.20a) gives the solutions for/3 and _:

c1
/3= 7 exp(-2r/) [2r/(7 - 1)- 1]- B1-_ exp(-r/) (r/2 - 47/+ 2), (5.r)
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and

_-- 612(7 - I) B1
2 uexp(-2U) + 2 exp(-u)(_]2 - 4U + 2). (5.8)

Integrating (4.18a), we find the similarity parameter corresponding to the O(M 2)

radial velocity

c_ = C_ exp}--2r],(" 5 [(2 - 7)
+ 7(1 - 27)+ 2_2(7- I)]

_ Bi_½ exp(-_)2 [722- 6_ + 6] + _. (5.9)

G1 is a constant of integration which we will determine from the boundary conditions

in (4.19a).

The homogeneous solution for ¢, which can be found using (4.23), is

Ch = _._l_½O exp(--_) (_3 _ 12772 + 36_ -- 24) (5.10)
6

where Q1 is a constant.

5.1.1 Initial/boundary conditions

C1 and _-i are determined so that v0 = 1, at _ = 1, when _- = 0:

I exp(1/2)
= G - 2

The radial velocity in the center of the vortex must be zero (4.19a), so

= c (2 7)

4

For this value of G1, (5.9) shows that far from the vortex core, as 77--+ oo, the radial

velocity is

al C2(_, - 7) (5.11)u_ _--r- i
_/_ 4r/_
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This result matches the prediction for the far-field radial velocity in the Taylor vortex

made by Colonius et al. [12].

The solutions for _, _, and _ (5.6-5.8) contain polynomials in _1. All powers of _1

in these polynomials are greater than zero. For this reason the boundary conditions

(4.19a) are trivially satisfied for any value of BI. Here we will determine BI so that

/51(_ -- 0, 7- --- 0) is close to the value found in the experiments of Mandella [25]. The

depth of the vortex density-well is defined as

/kp* = fl(7: = 0, 7") -- p_ = M2/51(?: __=0, 7-). (5.12)
P_

If, at 7- -- 0, the depth of the density-well is 55.0%, and the Mach number of the vortex

is M = 0.67, then/51(_ = 0,7- --= 0) = -1.23. The forms of (5.2) and (5.5) differ, so

in order for the series and exact solutions for the O(M _) density, temperature, and

entropy perturbations to match (4.18d), (5.2), and (5.5) require that B1 for the series

solution (denoted B_s), and B1 for the exact solution (denoted Ble) are related in the

following way:

Bls = Ble - 1)
4 (5.13)

For an initial density-well depth of 55.0_o and V = 1.4, BI_ = -8.47 × 10 -2 and

B1e = -1.67 x 10 -2. In §5.1.2 we will show that the series solution for _ (with

Pr = I) converges to the exact solution when a large number of terms are used

in the series. The exact solutions for both the reference flow and the compressible

perturbations are plotted in figure 5.1.

The specification of the initial density-well depth is a departure from from the

boundary conditions in (4.19a). Rather than only requiring that the gradient of the

density is zero at _ = 0, we are also specifying an initial value for the density at the

origin. The boundary conditions in (4.!9a) are invariant under the transformation

group (4.1), but the initial density-well depth condition for/51 is not. The resulting

shape of the density distribution is dependent on the initial value chosen for Ap*.

Since the coefficient BI is determined by this initial Ap* the distributions of the

self-similar solutions are dependent on the value of BI and can differ substantially as

BI is varied. When BI is increased the temperature T1, at _ -- 0 increases and can
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Figure 5.1: Exact solutions for a slightly-compressible Taylor vortex with 7-i -- 1/2,

Pr = 1, 7 = 1.4, C1 = exp(1/2)/2, BI_ = -1.67 × 10 -2. Results for four differ-

ent times are shown: --, 7- = 0; .... , 7- = 1/4; --.--, 7- = 1/2, and ...... ,

7- = 1. Reference flow quantities are plotted in (a) vorticity, (b) tangential veloc-

ity, and (c) pressure. The compressible perturbations are shown in (d) temperature,

(e) density, (f) entropy, and (g) radial velocity.

; ii_i!:i_

become positive; the corresponding value of density/51 decreases. The trends in/51

and 7_1 are reversed when B1 is reduced (see figure 5.2). Since (4.19a) is still satisfied

after applying the initial density-well depth •condition, the solutions are self-similar

in time.

5.1.2 Convergence rates

To determine the number of terms in the series solution N, required to accurately

give the distribution of the O(M 2) quantities,

err = TI_ (5.14)
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Figure 5.2: Variation of the exact solution with 7-i = 1/2, 7- = 0, Pr = 1, 7 = 1.4, C1 =

exp(1/2)/2. Radial distributions of O(M 2) (a) temperature, (b) density, (c) entropy,

and (d) radial velocity, are shown for three different values of Ble:

, Ble = 2 x 10-2; , Ble = -2 x 10-2; --.--, and BI_ = -6 x 10 -2 .
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is plotted in figure 5.3 for Pr = 1 and different values of 7/. The term err is a measure

of the relative error in the series solution; 7_1eand 7_s are the exact and series solutions

for 7_1, respectively. The error depends on both the size of N and the value of r] at

which the solution is evaluated. For larger _, more terms are required to accurately

represent the solution (figure 5.4).
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Figure 5.3: Convergence of the •series solution as a function of N. Plots show the

error (5.14) between the exact and the series solution for Pr = 1, 7 = 1.4, _-i = 1/2,

7- = 0, C1 = exp(1/2)/2, Bzs = -8.47 x 10 -2, and Bze = -1.67 × 10 -2. The error is
calculated at three different locations:

--, r/= 10, , r/= 20, and --.--, 77= 30.

[ , [

5.1.3 Prandtl number dependence

Consider how the O(M 2) solutions vary with the Prandtl number (figure 5.5). Pr

represents the ratio of viscous to thermal diffusion. When Pr = 1, heat and viscosity

diffuse at the same rate; when Pr < 1, heat diffuses faster. Therefore, when the

temperature profiles for different values of Pr are plotted on the same graph, and
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Figure 5.4: Convergence of the series solution as a function of r/for different N. Plots

show the error (5.14) between the exact and the series solution for Pr = 1, 7 = 1.4,

7-_= 1/2, _- = 0, C1 = exp(1/2)/2, BI_ = -8.47 x 10 -2, and BI_ = -1.67 x 10 -2. The

error is calculated for: --, N = 15, , N = 30, and --.--, N = 45.

each profile is set to the same temperature at f = 0 and _- = 0, the temperature

distribution for the curve with the smaller value of Pr will extend further from the

origin (figure 5.5a). Also, as Pr is lowered, the entropy distribution changes because

the heat conduction term in the dissipation equation (4.11) varies inversely with Pr.

As Pr decreases, heat conduction has a greater effect on the entropy variation g.

In this thesis, values of Pr = 0.5, 0.72, and 1.0 are used to get a feel for the

behavior of the O(M 2) solutions when Pr is varied over an extreme range. Note that

the Pr for most monatomic and diatomic gases at atmospheric pressure lies within

the range 0.67 _< Pr < 0.85 for temperatures between 100K < T _< 1300K. For a

given gas, the Pr is roughly constant, even at large temperatures. The theoretical

value of Pr for a monatomic gas is Pr = 2/3 [37].
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Figure 5.5: Pr dependence of the series solution with Ti = 1/2, T = 0, 7 = 1.4,

Bls = -8.47x 10 -2, C_ = exp(1/2)/2. Radial distributions of O(M 2) (a) temperature,

(b) density, and (c) entropy, and are shown for three different values of Pr:

--, Pr = 1.00; .... , Pr = 0.72; and --.--, Pr = 0.50.

: iiii:

5.1.4 Entropy production

In accordance with the Second Law of Thermodynamics, the total amount of entropy

in the flow must increase. Far from the core of the vortex the entropy is constant, so

for [ -+ oo the entropy flux is zero. Therefore, the following inequality must hold for

the total entropy in the vortex flow:

d/0 dT _1_d_:_>0. (5.15)

As a partial check of the O(M 2) perturbation solutions for the Taylor vortex, we use

(3.6), (4.16) and (5.8) in integral (5.15) to verify that the Second Law is not violated.

The result is

d fo _ C2(') ,- 1)_l[d[- 2(7- + Ti) 3' (5.16)
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., r

m n
0 0.699 0.199

1 exp(i/2)
2 1/2

2 1.6402 0.7964

3 4.5879 1.0922

4 15.507 1.387

Table 5.1- Values of Cm and _-i that give v0(r = 1, w = 0) = 1 for the first five
eigenvalues.

which is always _> 0 and so satisfies (5.15). Because the total far-field heat flux into

or out of the vortex is zero (see §4.2.1), the net entropy produced in the flow is due

to viscous dissipation. The magnitude of this dissipation depends on C1.

5.2 Numerical solutions

The Oseen vortex (m = 0) and the Taylor vortex (m = 1) are both commonly used to

model two-dimensional incompressible vortices. Therefore, it is interesting to compare

the self-similar solutions of the compressible perturbations to these reference flows.

The O(M 2) perturbation equations (4.18a, d, e) and (4.20a) are easy to numeri-

cally solve. As in §5.1.1 above, the reference flow constants Cm and _-i are fixed such

that _0 = 1 at _ = 1 when _- = 0. For reference, table 5.1 lists the values of Cm and

_-i which satisfy this condition for the first five eigenvalues. Equation (4.18e) is first

numerically integrated to find the similarity parameter a, which corresponds to the

O(M 2) temperature variation. The second order Runge-Kutta Scheme is used to per-

form the integration for 0 < 77< 10 on a 1000 point grid. The integration is started

at _ = 0 and is initialized so that there is no the heat flux at the origin (c9T1/0_ = 0),

and the temperature variation at _ = 0 corresponds to a density variation with a

density-well depth of 55.0%. The forcing terms in the equations are determined using

the analytical solutions for the O(1) velocity (3.20) and pressure (3.22). Equations
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(4.3) and (4.16) together with (4.18a, d), and (4.20a) are then used to calculate fi_,

fS1, and gl, respectively.

The numerical solutions for an Oseen vortex reference flow with Pr - 0.5, 0.72,

and 1.0 are given in figure 5.6. The numerical solutions of Tz, tSz, and sl for the

Taylor vortex for these values of Pr duplicate the series solutions already shown in

figure 5.5. Therefore, only the solution for fi_ is shown in figure 5.7.

The radial extent of both the Oseen and the Taylor vortex reference flows is larger

for smaller values of Pr. However, as shown in figure 5.5 the temperature, density,

and entropy distributions for the Taylor vortex exhibit peaks near the core radius

at the smaller Prandtl numbers. The entropy distributions of both reference flows

contain local maxima at the origin when Pr -- 0.5 and 0.72, but entropy peaks at the

core radius of the vortex do not appear when the reference flow is an Oseen vortex.

H

/i



• • / . :'!:, .::"_ :i;:', ;i:.:,_'_i '

#. ,(,

: :?

<: ,_ i •

:i, ) i. ¸

CHAPTER 5. SOLUTIONS

-0.2

-0.4

-0.6

-0.8

-1

11;I

/ /

l/ ii

/ /

i I I

l I

I l

/ .I'

I 1

Il II"

I I"

/ I"

11"

ii//

0 0.5 1 1 5 2 2.5 _ 3 5 4 4.5
r

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

-1.2

I" !

i.III /

I'1

i'1

,S
i)

i?
17

I I

0 015 1 1.5
I I

2:5_; 3:5 4 4.5
r

(a)

5.5

Figure 5.6: a,b

(b)

I

5 5.5

64



H ,,

• i !¸

C '

CHAPTER 5. SOLUTIONS 65

-0.1

-0.2

t_-

-0.3

-0.4

-0.5

i J i

ii

/ .

l I

/III .

/ ,

\

I I r T I

015 1 1'.5 2 2'.5__3 3:5 4 4:5 5
r

5.5

-0.2

-0.4

-0.6

-0.8

-I

-1.2

-1"4 t
-1.6

18
0

/

f _ t I i i t

0:5 , 1:5 2 2:5_3 3:5 , ,:5 5 55
r

Figure 5.6: Pr dependence of the numerical solution for an Oseen reference flow. _-i =

0.199, _- = 0, -)' = 1.4, C1 = 0.699. Radial distributions of O(M 2) (a) temperature,

(b) density, (c) entropy, and (d) radial velocity are shown for three different values of

Pr: --, Pr = 1.00; .... , Pr = 0.72; --.--, and Pr = 0.50.
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Figure 5.7: Pr dependence of the solution for a Taylor reference flow. _-i = 1/2, T = 0,
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for three different values of Pr:

--, Pr = 1.00; .... , Pr = 0.72; , and Pr = 0.50.
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Discussion

One of the most significant differences between two-dimensional compressible- and

incompressible- vortices, is that compressible vortices may possess a radial flow, but

incompressible vortices cannot. Therefore, we begin our discussion of the O(M 2)

solutions given in §§ 5.1 and 5.2 by considering the radial velocity in a slightly-

compressible vortex.

6.1 Radial velocity

The radial velocity g_ does not appear in either the O(1) or the O(M 2) radial too-

mentum equations, (2.9a) and (2.11b), respectively. Therefore, the radial velocity

does not arise from a force imbalance, such as a difference between the local pressure

gradient and the centrifugal force in a rotating vortex flow. Instead, the form of

the perturbation equations (2.11a-c),(2.12), and (2.13) and the O(1) reference flow

solutions (3.16), (3.20) and (3.21) requires the O(M 2) solutions to have a radial flow.

The O(1) reference flow pressure and velocity form the driving terms in the equation

for the O(M 2) temperature (2.13). The density tS_ is, in turn, found from the O(M 2)

ideal gas law (2.12), and so is dependent on T_ and i50. The solutions for T_ and 150

necessitate the density in the vortex to increase with time. Therefore, as the vortex

decays it is compressed, and the O(M 2) continuity equation (2.11a) requires the ra-

dial velocity to convect mass into the vortex. Starting with the O(M 2) temperature

67
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equation (2.13) we can show that far from the core of a slightly-compressible vortex

_ is necessarily negative and varies like _ _ 1/e. The volume integral of (2.13),

taken over the whole flow-field, is

d/0
dm Tlede Pr -_ \ ae ] de

[I /
Wo It ae

2

dSo ede + -_m pordr

(6.1)

Owing to the fact that there is no net heat flux into or out of the vortex (see §4.2.1),

the second integral on the left hand side of this equation is zero. Using the O(M e)

ideal gas law (2.12), (6.1) becomes

dT \ Oe ede- _ ib0ede. (6.2)

The second integral on the right hand side of this equation can be expressed in terms

of the O (1) tangential velocity by integrating (2.9 a):

S/ loT-d /_0ede = d oo _2-- ede.
dm dT

Using (6.3)and (2.11a) in (6.2)we find that

(6.3)

lira efi_ : (7-2)f0 °° [(°v°] 2 (__)2],-_o_ [ tt/9e ] + ede. (6.4)

Since the terms in the integral are positive definite, and physically realistic values of V

lie in the range 1 < 7 --<5/3, far from the vortex core the radial velocity is necessarily

negative (see Colonius et al. [12]).

Note that as e -+ oo the compressible perturbation terms vanish (2.14b), and so

the far-field flow is essentially incompressible. Because of this, one would expect the

asymptotic behavior of the radial velocity around the vortex to have the same form

as the radial velocity around a point mass sink in a two dimensional, incompressible
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flow. As we can see from (6.4), the far-field radial velocity has this property: it varies

with _: as _ _ I/_:.

The far-field behavior of the radial velocity will be the same for all values of m

and Pr, and suggests that a slightly-compressible vortex is always compressed. In

figure 5.6d and figure 5.7 we see that for both the case of the Oseen and the Taylor

vortex _ is negative for all values of _. The magnitude of _ is zero at _ = 0, increases

almost linearly to a maximum, and in the far-field decreases like I/_. However, just

outside the vortex core (where _ _ I) the magnitude of the radial velocity decreases

non-monotonically for Pr _ I. In both vortices, t51 is larger near the core for the

smaller values of Pr used, so the fluid within the core is compressed to a lesser extent

-- the corresponding radial velocity has a smaller magnitude.

6.2 Vortex energetics

The total amount of pressure work performed on a fluid volume is given by the integral

of the product of the pressure and fluid velocity at the volume's surface:

(6.5)

Here we have used Stokes' Theorem to convert the surface integral into a volume

integral and split the total pressure work into two terms. The first term 3- _p

represents the work required to move fluid against the pressure gradients in the volume

and the second term pV. _ is the work done by pressure forces in locally compressing

the fluid at each point within the volume. In the far-field, u _ I/r, the pressure is

constant, and the surface area of the two-dimensional flow field is proportional to r.

Therefore, from the surface integral in (6.5) we see that the external pressure field

surrounding a slightly compressible free vortex performs a net amount of work on the

flow as the vortex decays. As viscous shear stresses decrease the tangential velocity,

the centrifugal force of the flow's rotation relaxes and the fluid in the vortex core is

compressed by the external pressure field. This pressure work, in addition to heat

released by the dissipation of the flow's kinetic energy, increases both the temperature



/i/:i') _

• :(i ¸¸¸ '

• •!i;̧

?'

_i__ :•

CHAPTER 6. DISCUSSION 7O

and density of the vortex. To see this in more detail, we will consider the two parts of

the total pressure work and their separate effects on the kinetic and internal energy

of the flow.

The scalar product of the velocity and the momentum equations gives an expres-

sion for the balance of kinetic energy in a flow. Note that the kinetic energy associated

with the radial component of the velocity does not enter our analysis because it is

O(M4). Integrating the product of 90 and the tangential momentum equation (2.9b)

gives an expression for the total O(1) kinetic energy in the vortex:

We see that since the reference flow is incompressible, only the work involved in

viscous dissipation decreases the total O(1) kinetic energy of the flow [21].

The product of 90 and (2.11c), as well as the use of (2.9a), gives an equation for

the O(M 2) kinetic energy:

+ _ + N (_0_1)

_,O/_o _ a [10 ]= -_i-_-+vI_ 7_(_o) _o[ o]+ v0_ _ (_1) .

(6.7)

Integrating this expression over the entire flow field we find the total O(M 2) kinetic

energy in the flow

- efo°*\ o¢ \o¢

(6.8)

From this equation, (3.6), (3.18a), and (4.3b,d), we see that the time derivative of

the total O(M 2) kinetic energy varies as 1/T 4m+2. Since the total O(M 2) kinetic

energy is a perturbation to the total O(1) kinetic energy, it may be either positive or

negative in sign. Since this term may be negative, the second term on the right hand
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side of (6.8), which represents the contribution of viscous forces, is not necessarily

positive-definite. However, in the case of both the Oseen and the Taylor vortex, the

first term on the right hand side of (6.8), which gives the g. Vp part of the pressure

work in (6.5), always increases the Q(M 2) kinetic energy of the vortex. The reason

this happens is because the radial velocity in these two vortices is negative for 7= > 0.

Turning now to the internal energy of the flow e, let _ = CvTooe. With this choice

of scaling, _ = T and from (2.11d) we find an equation for the balance of internal

energy in the flow

= 7(7- 1) V-z°
8---7 ]T

+ "71 a f_a¢,'_ ("7- 1)a ,
P,-,_a,_[,r-5-¢) , _-(,_,_,). (6.9)

Integrating this expression over the entire flow field gives

d-7 _,_d_= "7("7-1) t a# )2 fo _ 1 0 ([_)[d_; (6.10)_d_- ("7- 1) _a_

note that the integral of the heat flux is zero (see §4.2.1).

Because the first term on the right hand side of this equation is positive definite,

and since fluid is moving into the vortex, the total internal energy of the vortex always

increases in time. The second term on the right hand side of (6.10) is proportional to

the O(M 2) divergence of the flow and represents the total amount of work performed

by the pressure in compressing the fluid within the vortex. To see this note that, to

O(M2), the term -pV. g in (6.5) is given by

10 (_5,_.) (6.11)-PV" _ -_ -7 0-7 '

where (2.7) has been used to make the terms non-dimensional, and the Rayleigh-

Janzen expansion (2.8) was applied.
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6.3 The entropy distribution

For the initial and boundary conditions chosen in §5.1.1, the far-field entropy is larger

than the entropy in the core of the vortex. What could produce a vortex with this

feature? Once again, consider the formation of the vortex studied by Mandella &

Bershader [26]. The experimental vortex isn't necessarily self-similar, but here we

will use Mandella's results to provide some insight into the entropy distributions

in compressible vortices. Figures 3.2-3.3 show the formation of a vortex by shock

diffraction. When the vortex forms, the shock passing beneath the airfoil diffracts

around the trailing-edge of the airfoil (see §3.3). The diffracting shock expands almost

cylindrically around the sharp corner and becomes highly curved. During this process,

the shock weakens substantially, and the entropy difference across it decreases. The

vortex core forms at the trailing-edge of the airfoil, and is surrounded by fluid of higher

entropy which wraps around the core as it rotates. The part of the shock passing

over the upper section of the airfoil collides with the diffracted lower shock, and the

resulting structure knocks the vortex away from the airfoil. The fluid surrounding the

vortex has a larger amount of entropy, because the fluid comprising this region passes

through the less-curved parts of the upper and lower shocks. Both the uppe r shock

and the majority of the lower shock are stronger than the part of the shock which

diffracts around the airfoil's trailing-edge. Additionally, any portion of a shock which

passes through the vortex, such as the shock structure which forms from the collision

of the upper and lower shocks, is considerably weakened as it travels through the low

pressure region of the vortex core. In this scenario one would expect the vortex to

contain a local "cold spot" with less entropy than the surrounding fluid. If this is the

case, does the experimental data reported by Mandella [25] support this conclusion?

Mandella [25] presents formulae for curves fit to experimental measurements of

pressure and density in a compressible vortex:

Ap
p(r) = p_ 2, (6.12)
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Ap
p=p - (6.13)

Here, Arp = 0.117 cm is a length scale for the pressure profile, and Ar = 0.166 cm is

a length scale related to the density profile. The other parameters include:

p_=1.787kgm -3, Ap=l.076kgm -a, (6.14)

and

p_ = 152100 Nm -2, Ap = 107300 Nm -2. (6.15)

Also note that Mandella gives a core size l/_ 0.93mm based on his estimate of the

tangential velocity.

We can use these formulae to calculate the entropy _, in the vortex. Evaluating

(4.5) with these parameters gives the curve shown in figure 6.1d. For the values

given in the above curve=fits, the entropy in the center of the vortex is larger than

in the far-field. However, Mandella estimates that the pressure curve-fit is accurate

to within 4-5.6%. Note what happens when Ap is increased by 2.0% and then by

4.0% from the value given in (6.15). The entropy in the center of the vortex decreases

as Ap increases, and can become less than s_. This demonstrates that the entropy

distribution is very sensitive to small variations in the values of pressure and density.

Therefore, one must be extremely careful to take into account the accuracy of the

experiment. While the curve-fits may give reasonable measures of the pressure and

density, they cannot be used to conclusively determine the exact values of _ in the

vortex; the prediction that the far-field entropy is larger than the core entropy lies

within the accuracy of the experiment.

6.4 Entropy production

Most of the local entropy changes occurring in the core of a self-similar, slightly-

compressible Taylor vortex are caused by heat conduction; since there is no net heat
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Figure 6.1: Radial profiles of (a) pressure, (b) density, (c) temperature, and (d) en-

tropy from curve-fits of experimental data (Mandella 1987). Small variations in the

pressure are given by:

--, Ap = 107300 N/m 2 nominal pressure curve; .... , Ap = 109500 2.0% increase

at f = 0, , Ap = 111600 N/m 2 4.0% increase at _ = 0.
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flux into the vortex the total dissipation produced by heat conduction is zero. To see

this, examine the dissipation equation (4.11). The rate of change of entropy is plotted

in figure 6.2 for Pr = 1 at several different times. The maxima of 0_1/_T correspond

to the minima of _1 (figure 5.1f). In figure 6.3 each of the terms in (4.11) is plotted

separately. This allows us to compare the relative magnitudes of the rate of entropy

changes due to viscous dissipation and due to heat conduction. In the core of the

vortex [ _< 1, the magnitude of the heat conduction term is larger than the viscous

dissipation term. Note that the part of 0_1/0_- due to heat conduction is larger than

zero, because heat is flowing into the cold core of the vortex. For _ _ 1 and longer,

the rate of entropy change from heat conduction is less than zero because heat is

flowing away from this region and into the vortex core. The rate of dissipation from

viscous diffusion is, of course, always greater than zero. As shown in figure 6.3, the

series solution for ap, (5.2), can be used with (4.16a) and (4.20b) to reveal that the

rate of entropy change from heat conduction increases in magnitude as the Prandtl

number decreases; when # is constant, heat diffuses faster, but the rate of viscous

diffusion remains the same.

6.5 Similarity and decay rates

In §§4.1.1 and 4.2.3 the similarity forms of the O(M 2) flow variables are used to

determine the decay rates of the self-similar solutions. Barenblatt [5] shows several

examples of physical phenomena which do not have self-similar initial conditions, but

which asymptotically approach a self-similar solution at large times. Here we test

this idea, and check to see if the self-similar solutions for the slightly-compressible

vortex represent the limiting behavior of compressible vortices which are not initially

self-similar.

Consider the decay of the O(M 2) flow quantities governed by (2.11a-c), (2.12),

and (2.13). We will assume that the O(1) flow is self-similar because, as discussed

in §3.2.4, we cannot superpose the O(1) reference flows for different eigenvalues m

and still find self-similar solutions for the O(M 2) terms. Since the reference flow

is self-similar and the forcing terms in (2.11a-c), (2.12), and (2.13) are O(1) flow
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Figure 6.2: Entropy production in the Taylor vortex when Pr = 1, C m= exp(1/2)/2,

= 1/2. --, r = O; , r = 1/4,--.--, r = 1/2, ...... , r = 1.
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variables, the forced parts of the O(M 2) solutions will also be self-similar. Note that

these equations are linear in the O(M 2) terms and the Laguerre polynomials, which

constitute our solutions, are a mathematically complete set of functions. Therefore,

after determining the corresponding particular solution, we can superpose the O (M 2)

homogeneous self-similar solutions to construct a solution for any O(M 2) initial con-

dition. At large times the vortex flows resulting from such a superposition process

will be governed by the most slowly decaying self-similar component of the flow.

For example, consider the decay rate of the O(M 2) temperature T1 from an initial

condition which is not self-similar. Let the O(1) base flow be a Taylor vortex m = 1,

so that the self-similar part of the solution for the temperature TI** is given by (4.3a)

and (5.6). We can alternatively represent this part Of the solution by

Tlss -- f1(77)
(r + ri) 3• (6.16)



:, [+ _., ,,,,:

CHAPTER 6. DISCUSSION 78

(/, ',_

/

1.5

1

0.5

0

-0.5

/ \ .

ii/ \ _ .

.:l/ ,, _, .

)1 ,, , .

. t

\\ / ] .\ / / +
• z

• _ .I.1 .... " •

05 1 1.5 2 2.5 _ 3 35 4 4.5 5 5.5
r

Figure 6.3: Comparison of entropy production by heat conduction and viscous dis-

sipation in the Taylor vortex when _- = 0, Cm - exp(1/2)/2, _-i -- 1/2: , viscous

dissipation terms, and heat conduction terms for .... , Pr = 1, , Pr = 0.72,

...... , Pr = 0.5.

We add another self-similar term

¢,,,_ ]_(v)
(+.++_+), (6.17)

to Ttss so that the complete solution represents the evolution of the O(M 2) temper-

ature from an initial condition which is not self-similar

_ = _+_+ _'_,,+- f1(,7) A(,7)
+ (6.18)

(_ + _+)_ (_ + _+)

This expression shows that the limiting behavior of the solution for T1 is dominated

by its most slowly decaying component, which in this case is T_s.
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From (4.3a-e) and (4.16a-c)we see that the decay rates of the O(M 2) self-similar

terms decrease as the eigenvalue m decreases. Therefore, the motion of a decaying

vortex which is not initially self-similar, will asymptotically approach the self-similar

solution corresponding to the component of the superposed solutions with the lowest

eigenvalue. If a vortex under computational or experimental investigation is not

initially self-similar, a self-similar solution will still give a close approximation to its

motion at large times.
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Chapter 7

Conclusions &: Recommendations

7.1 Conclusions

The objective of this thesis is the development of a simple analytical description of a

compressible free vortex. Applying group methods to the Navier-Stokes equations, it

is found that they are not invariant under translations in the thermodynamic variables

and so do not admit self-similar solutions for compressible free vortex flow. However,

the equations governing a slightly-compressible free vortex possess this invariance

property; these equations describe a set of incompressible reference flows and the

compressible perturbations to each reference flow. The perturbation equations are

derived under the assumptions that the viscosity and thermal conductivity of the

fluid are constant, the far-field is quiescent with constant values of pressure, density

and temperature, and that the flow evolves on a viscous timescale. The reference

flow vorticity satisfies an eigenvalue problem in which each eigenvalue corresponds to

a different self-similar incompressible vortex. An integral invariant for each vortex

solution is determined.

Using the perturbation equations it is shown that, generally: a self-similar slightly-

compressible vortex cannot be homentropic; the far-field radial velocity in the vortex

is negative and inversely proportional to the radial coordinate; and there is no heat

flux into or out of the vortex in the far-field.

8O
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A three parameter group, which leaves the reference flow equations and the per-

turbation equations invariant, is identified. This group is used to convert the flow

variables to similarity form and to reduce the perturbation equations from PDE's to

ODE's. The similarity forms of the flow variables are used to reveal their decay rates

and it is found that all of the thermodynamic quantities decay like I/_ -2m+1. Addi-

tionally, it is shown that superposed similarity solutions are not self-similar, and that

slightly-compressible vortices will asymptotically decay to a self-similar state from

arbitrary initial conditions.

A self-similar solution for an Oseen vortex reference flow is found numerically,

and both numerical and analytical solutions for a Taylor vortex reference flow are

given. For general values of Pr the analytical solutions for the Taylor vortex are

composed of infinite series. However, when Pr -- 1 the solutions are simple closed-

form expressions. The closed-form solutions are used to measure the convergence

rate of the corresponding series solutions (with Pr - I), and it is found that for

0 __ r] __ I0 the sum of the first twenty-two terms of the series gives an approximation

to the exact solution with an error of less than I_.

The solutions for the Oseen and Taylor vortices reveal that varying the Prandtl

number has a significant effect on the distributions of temperature, density, entropy,

and radial velocity in a slightly-compressible vortex. For Pr = 0.5, and 0.72 the

radial temperature distribution for the Taylor vortex exhibits peaks near the core

radius of the vortex. For these values of Pr, the magnitude of the radial velocity in

both the Oseen and the Taylor vortex reference flows decreases non-monotonically

from a maximum value near the core radius; in contrast, when Pr - 1 the decrease in

the magnitude of the radial velocity is monotonic. It is shown that the non-monotonic

decrease of the radial velocity's magnitude, for Pr _ I, is due to local variations in

the compressibility of these vortices.

The density in the self-similar solutions is initialized so its minimum value in the

vortex core corresponds to the minimum density in the vortex studied by Mandella

[25]. With this choice of density at _ -- 0, the entropy in the core of the self-similar

vortex is less than the entropy of the surrounding fluid. It is shown that this prediction

for the entropy distribution lies within the accuracy of Mandella's experiment and
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that the entropy in the core of the vortex is extremely sensitive to small pressure and

density variations.

The dissipation in the Taylor vortex is split into two terms to show that most of

the local entropy changes in the vortex core are caused by heat transfer. However,

since there is no net heat flux into the vortex for _ -+ oo, heat conduction does not

increase the total entropy in the vortex; instead it only redistributes the existing

entropy. For the slightly-compressible vortex, the total entropy produced in the flow

comes from viscous dissipation alone.

An examination of the kinetic and internal energy in a slightly-compressible vortex

shows that to O(1) all of the kinetic energy in the vortex is consumed by viscous

dissipation. However, to O(M 2) the far-field pressure compresses the fluid within the

viscously decaying vortex, thereby increasing the density in the vortex core. Part of

this pressure work _. Vp, together with viscous dissipation, increases the internal

energy and temperature in the vortex. The other part of the pressure work, pV • g,

increases the O(M 2) perturbation of the vortex's total kinetic energy.

The search for self-similar solutions has yielded simple analytical expressions for

the Taylor vortex, and a set of ODE's which can be numerically integrated to find solu-

tions for the compressible perturbations to a great number of different incompressible

vortex reference flows. From a theoretical standpoint, the results of the above analysis

provide a rich description of the basic physical properties of a slightly-compressible

vortex and a foundation for understanding compressible vortices in general. From a

practical standpoint, the use of the closed form Taylor vortex solutions is a quick and

simple means of validating and initializing numerical simulations of flows containing

a free two-dimensional compressible vortex.

i_ -
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7.2 Future work

A couple of important questions have arisen from this work and represent possible

extensions of the current study.

Here, it is assumed that the viscous diffusivity and thermal conductivity of the

fluid are constant. In reality both of these quantities are temperature dependent.
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An interesting continuation of the present work would be to include the temperature

dependence of p and _ by using power law models [41]

# = #oT _ and _=_oT'_2;

for air nl = 2/3 and n2 = 0.81, and for Argon nl = 0.72 and n2 = 0.73. Combined

with a Rayleigh-Janzen expansion of the temperature, such models may permit one

to derive a set of low Mach number perturbation equations which can be solved

analytically.

The analysis above does not account for the effects of acoustic waves in the flow.

A theoretical study that couples the propagation of acoustic waves and the dynamics

of a viscously decaying compressible vortex may help to explain some Of the dis-

crepancies between the findings of Mandella [25] and those of Colonius et al. [12]

(see Appendix A). Such a solution may also be useful for predicting/modelling the

circular acoustic waves which arise in shock/vortex interaction [18].

Additionally, a full characterization of the flow during the formation and subse-

quent evolution of the compressible vortex studied by Mandella [25], [26], has still not

been done 1. Since compressible vortices are present in many flows of engineering and

physical interest (see chapter 1), a thorough knowledge of the formation process and

structure of a single compressible free vortex is of fundamental importance. There-

fore, future computational and experimental effort should also be directed towards

more fully understanding the flow studied by Mandella & Bershader.

1See §3.3.



Appendix A

Angular Momentum

In §6.1 it is shown that the radial velocity in a slightly-compressible vortex arises

from the form of the perturbation equations (2.11a-c),(2.12), and (2.13) and the

O(1) reference flow solutions (3.16), (3.20) and (3.21). Mandella & Bershader [26]

suggest that the radial velocity in the vortex they investigated arises to counteract

the outward spread of angular momentum by viscous diffusion. To further explore

these ideas, consider the following preliminary investigation of the conservation of

angular momentum in a compressible vortex.

A dimensional analysis of the angular-momentum transport occurring in com-

pressible vortices reveals three flow regimes into which their time evolution can be

characterized. Each flow regime is determined by the magnitude of the radial veloc-

ity and the core size of the vortex. Note that the main part of this thesis focuses

on self-similar, slightly-compressible vortices, but the following analysis applies more

broadly to compressible vortices in general.

_i iii

_IL '

A.1 Angular momentum transport

For a two-dimensional and cylindrically symmetrical fluid flow, the equation governing

the conservation of angular momentum, expressed in cylindrical coordinates, is:

28

84

r Or r #_rr = 0. (A.1)
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The first term in this equation is the local time rate of change of angular momentum,

the second its convection by radial mass flux, and the final term is its rate of change

due to viscous torque. Using the constants li, wt, p_, #, Urn, and Vm, the angular

momentum conservation equation can be cast in the following non-dimensional form:

pr--2 0-_ _-_) +[_'_ (--_-i )_TtUm _ fifzO (rv) _ { #Tt } 1 c9 [3 0p--_/2 _ _-_ [¢ #_--_ (rv-_-)] : 0. (A.2)

For the analysis, numerical values characteristic of Mandella's experimental results

[25] are used for li, p_, #, and vm (see table A.1). Note that vm cancels from the

expression, and that the analysis yields the values for the time constant of angular

momentum transport Tt, and the radial velocity (at li) urn. An examination of the

orders of magnitude of the two resulting dimensionless groups (bracketed terms), sug-

gests that there are three flow regimes into which the transport of angular momentum

within a vortex can be categorized: convective, convective/diffusive, and diffusive.

Constant Value Description

li 9.3 x 10 -1 mm

Poo 1.8 kgm -3

# 1.9 x 10 .5 N s m -2

Vm 2.3 x 10 2 ms -1

Vortex core radius

Free-stream density

Coefficient of viscosity (air)
Tangential velocity at li

Table A.I: Physical constants characteristic of the experimental vortex [26].

ii/ ¸
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A.I.1 Convective: Ttum/li ": 1.0 >2>#Tt/(p_li 2)

In this flow regime convection is the dominant process by which angular momen-

tum is transferred within the vortex. By eliminating Tt in the inequality, approx-

imate values may be found for the radial velocity: Um >> 1.1 x 10 -2 ms -1 or

more roughly Um > 3.0 X 10 -2 ms -1. Estimates for the time scale of this motion

are given by Tt _ li/Um, which yields a time scale of Tt << 8.2 x 10 -2 s or approx-

imately Tt < 3.0 X 10 -2 S. Note that the radial velocities predicted by Mandella

Um "" 0.3 ms -1 lie in the convective range, and that for the experimental vortex
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under investigation, when Um is negative (inward flow) the angular momentum in the

vortex is increasing.

A.1.2 Convective/diffusive: _-tum/li _ 1.0 _ pTt/(p_oli 2)

When the magnitude of each dimensionless group is on of the order of 1.0, both

the effects of viscosity and convection must be considered in determining angular

momentum transport within the vortex. An approximate value of Um in this region

is given by: 3.0 × 10 -3 m s -1 _< Um < 3.0 X 10 -2 m s -1. The radial velocities reported

by Colonius et al. [12] Um _ 6.8 × 10 -3 m s -1 lie in this range. The time scale for

these effects is Tt _ 7.9 x 10 -2 s, which is the same as the viscous time scale of the

incompressible reference flow solutions found in §3.1.

A.1.3 Diffusive: TtUm/l i _ 1.0 _,_ #Tt/(pooli 2)

In the diffusive regime viscosity is mostly responsible for the spreading of angular

momentum. When slight compressibility is present radial velocities in the range

um << 1.1 × 10 -2 ms -1 or around Um < 3.0 × 10 -3 ms -1 are expected for this regime.

A.2 Discussion

ii:' •! _i
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The magnitude of the radial velocity measured by Mandella suggests that convection

is the dominant mode of angular momentum transport in the vortex he describes.

However, Colonius et al. suggest that the radial velocity should be around two or-

ders of magnitude smaller than that determined by Mandella; in this case the angular

velocity transport regime would be convective/diffusive. The discrepancy in the mag-

nitude of the radial velocity may be due to unsteady variations in the experimental

ambient flow conditions. In the computational study, the external pressure, density,

and temperature are fixed -- the only mechanism for changes to occur in the vortex

is viscosity. In the experiment the vortex forms in a complex, unsteady flow field

(§3.3). The vortex is created in the low-pressure region behind an airfoil, and after

being traversed by a shock, is convected away from the airfoil. The radial pressure
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gradient across the vortex is approximately balanced by its tangential velocity. If

there are acoustic waves present in the flow, they could create small changes in the

vortex far-field pressure. Such pressure variations might cause the tangential velocity

profile to change, and the radial convection of angular momentum may be the mecha-

nism responsible. Please see yon Ellenrieder et al. [40] for a more complete discussion

of how variations of the far-field flow conditions may affect the transport of angular

momentum and the distribution of entropy in a free vortex.
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Appendix B

Introduction to One-Parameter

Lie Groups

This appendix gives a brief introduction to the basic ideas behind Lie (pronounced

"lee") group methods. Much of the material presented here has been adapted from

Prof. Brian Cantwell's course notes for AA218 "Introduction to Symmetry Analy-

sis" [10]. A more complete description of the theory is presented in the course notes,

and also in the text by Bluman & Kumei [8].

B.1 Basic definitions

A Lie group is simply a collection of parametrically-defined transformations on the

variables in an equation _. An equation is invariant under a Lie group if the equation

is symmetric under the set of transformations in the group. In geometry and art

we say that an object is symmetric if we can perform an operation on it, such as a

rotation or translation, and after the operation the object has the same appearance.

In an analogous way, an equation is symmetric if we can substitute transformed

variables into the equation and the resulting expression appears the same as the

_In general a group may also be applied to a system of equations.

88
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original equation. For example, take the equation

dy y

dx z '

and the transformation group

89

(s.1)

= eSx, [l= eSy, (B.2)

where s is known as the group parameter.

The differentials of x and y in (B.2) transform as

d:_ = eSdx, d_ = eSdy.

:i_ . ,_

i _, : _,,

"_ : !'%

On substituting the transformed variables into (B.1) we find

e-Sd_ e-S_

e -s d._ e -s ._' (B.3)

and after canceling the exponential terms we get

d_
- (S.4)d_ _"

Aside from the tildes, (B.4) and (B.1) look the same; they are functionally equivalent.

Therefore, (B.1) is invariant under the transformation group (B.2).

A Lie group has four main traits, the group: 1) has an identity, 2) has an inverse,

3) is invariant under composition (also known as "closure") and 4) is associative.

These properties are important in the development of self-similar solutions because

they allow us to derive an invariant functional relationship between the variables in

an equation. This functional relationship can then be used to simplify the equation.

Let's dissect the preceding paragraph by first examining the first four properties

of a Lie group more closely. Returning to the example transformation group (B.2),
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we see that when s = 0, e_ = 1. So for a given value of the group parameter s, the

group becomes an identity transformation. 2

Next, consider a second transformation group for the transformed variables :_ and

in (B.2) above:

x = et:_, _ = et_. (B.5)

Rewriting (B.5) in terms of the variables x and y we get

= e = ]

ff] = e t (e_y) = et+_y.

(B.6)

Here we see that ift = -s, then x = x and _ = y. So the group (B.2) has an

inverse which "takes you back" from the transformed variables :_ and _) to the original

variables x and y. Additionally, note that we can define a new variable u = t + s,

such that

= = e y. (B.7)

The transformation (B.6), which is a composite of the transformations (B.2) and

(B.5), appears the same as the original transformation (B.2) when expressed in terms

of the "dummy variable" u in (B.7). Thus, the group (B.2) is invariant under com-

position.

Now suppose that in forming the composite transformation (B.6) we had first

transformed the transformation and then applied the result to x and y

_:== (ere s) x = et+Sx, }
y = (ere s) y = et+_y;

(B.8)

the composite transformation remains the same. Thus, the group is associative.

To show how self-similar solutions to an equation can be found using a Lie group,

let's assume that an invariant functional relationship between the variables in an

2In general, a Lie group can always be mathematically manipulated so that when the group
parameter is zero the group becomes an identity transformation.
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equation exists. Using the vectorial representation of a Lie group

:_ = X(x; s), (S.9)

the invariant relationship between the quantities is given by

¢(_) = ¢(X(x; s))= ¢(x). (B.10)

defines a family of characteristic surfaces or level curves such that g2 is constant

when the invariant relationship between the variables is satisfied. The variables which

compose the vector x then become parametric functions of s (figure B.I).

Y

_2,y)
(x,y) )

_g(x(s),y(s))

r

X

_/= _e(x,y)=_(_,y) = _e(}_/)

Figure B.I: Along the invariant curve ¢ is constant and x and y are parametric

functions of s. Lie group transformations map the point So to the points Sl and s2.

is the vector of infinitesimals and is tangent to the curve ¢.

A convenient way of determining _ is to arrange the group (B.9) so that s = 0

corresponds to the identity transformation, and then expand the transformation in a
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Taylor series near s = 0:

°xI s + O(s2). (B.11)
i=x+ -_--s s=o

The derivativein the second term, taken in the limits -+ O, isknown as an infinites-

imal and isgiven by

OX  Lo= Lo. (B.12)

Here the subscript i denotes the i th component of the vector x. The sum of the first

two terms in expansion (B.11) is called an infinitesimal transformation

i = x + _s. (B.13)

Substituting the infinitesimal transformation into (B.10) we get

• (_) = _(x + s_)

O_-s_,=o s2 02_1 s3 03_[ (B.14)-- + 3! Os a +"'"-- gr(x)-ks +2! Os 2 s=O s=o

With the relation

OS s=0

(B.14) reduces to

09
• (_) = _(x) + s_--

oxi

OXi Oxi I 0 0Os,_-o_ =_(x)0%7'

s 3

t _ZI] I-- ° °-

(B.15)

(B.16)
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So a necessary and sufficient condition for _ to be an invariant function is that

O-_zi --0. (B.17)

Geometrically, the gradient of each invariant surface in _ is orthogonal to the corre-

sponding vector field of the surface's infinitesimals [. Since the gradient of a surface

is parallel to the surface's normal, the infinitesimals form a vector _ which is tangent

to the surface (figure B.1).

If there are n components in the vector of transformations (B.9), the partial

differential equation (B. 17) has an associated system of characteristic equations given

by

dxl dx2 dxa dx_

_--_-= _2 = _--_ = .... _. (B.I8)

The solutions of these equations determines the family of invariant surfaces 9. There

are n variables in the transformation group, and only (n - 1) characteristic rela-

tions between them. Therefore, once the solutions Cj to the characteristic equa-

tions are determined, a group of n variables can be specified by (n - 1) terms

= _(¢1,¢2,...,¢_-1). As we will show below, this is where the power of Lie

groups for simplifying and solving equations comes from.

As an example let's find _ for the transformations given in (B.2). The infinitesi-

mals are

= = x, and _2 = = y. (B.19)
s=O s----O

The associated characteristic equations are

dx dy
-- = --, (B.20)
x y

and so the solution for k_ is given by

g2 = k9(¢1) , where ¢1 = ln(y/x) (B.21)
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is a constant of integration. However ¢1, which is called an invariant, should not be

strictly thought of as a constant, but as a parameter that determines which invariant

curve the solution lies on. Along each curve the invariant will have a constant value.

Let's alternatively represent the family of invariant curves as

¢=¢(y/x).

If we let _1 = y/x the relation between x and y everywhere on an invariant surface

is given by

y =  lx. (B.22)

Therefore, the family of surfaces _ corresponds to a set of rays centered at the origin

(figure B.2). As we vary the invariant ¢1 we move from one ray to another. But,

along any given ray ¢1 is fixed.

Y

r

X

): ":

Figure B.2: The transformation (B.2) maps points along rays centered at the origin.

Each ray is specified by the numerical value of ¢1.
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B.2 Simplifying/solving equations

In the simple example above there is only one dependent and one independent vari-

able. Therefore, the relationship between x and y given by (B.22) is also the solution 3

to (B.1).

When there are more than two variables in an equation, the solution for k_ can be

used to simplify the equation by reducing the number of variables required to specify

a solution. In this case, the relation between the invariant surfaces can be rewritten

as

¢1 = f(¢2, ¢3,..., ¢_-1). (B.23)

Take, for example, the linear, one dimensional, heat equation

0¢ 02¢
Ot - cox2" (B.24)

This equation is invariant under the following Lie group

= ¢, :c = eSx, t= e2St, (B.25)

and the corresponding infinitesimals are

[1=0, _2=x, [3=2t, (B.26)

i i

%

respectively. Since ¢ is already an invariant, let ¢1 = ¢, we don't need to include it

in the characteristic equations. The characteristic relations between x and t are

dx dt
- • (B.27)

x 2t

Therefore, the second invariant relation is given by

¢2 = x/V_, (B.28)

3Note that when solving a problem in which boundary conditions are specified, the Lie group

must leave both the equations and its boundary conditions invaxiant.
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and the family of invariant surfaces is defined by

= _(¢:t, ¢2). (B.29)

As mentioned above, we can alternatively rewrite the relation for the family of invari-

ant surfaces as ¢1 = f(¢2). Therefore, solutions to the heat equation can be found

where

¢ = f(x/v_). (B.30)

If we set r/-- z/v/_ = _b2, the partial differential equation (B.24) can be recast as a

very simple, readily solvable, ordinary differential equation

d2¢ de

dr/2 - -r/_--_. (B.31)

One of the features of these solutions (B.30), which holds in general when the

relation B.23 is used to simplify an equation, is that they are self-similar. In fact,

one can generally say that the identification of a Lie group which leaves an equation

invariant guarantees that the equation has a self-similar solution.

Lastly, it should be noted that Lie groups provide an extremely powerful means

of solving nonlinear differential equations. They are often used to identify integrat-

ing factors for such equations. However, these topics are beyond the scope of this

simple introduction; the interested reader should consult the references listed at the

beginning of this appendix.

v' • _i
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Appendix C

The Integral Invariants Aj

In §3.1 solutions for the reference flow similarity parameter _(_) and the correspond-

ing integral invariants .Aj are given for even values of the eigenvalue/stretching-

parameter j. This appendix contains a more detailed explanation of the solution

for _Q]) and a proof that for positive, odd values of j, the integral invariants fi_j are

unbounded.

Equation (3.8) is a form of Kummer's equation [1] and its general solution is

_(rl) = e-' [CjM(-J-'2' 1; 7?)+ bjU(- jz ; 1; 'r/)] .

Here Cj and Dj are constants and U(-j/2; 1; _) is

(c.1)

_- [M(-j/2; 1; _?) l_I(-j/2; 1; r])]
U'(-2 ;1;_) - sin(_) L_R5 - _r_j'

which is mathematically "undefined". Therefore, we take Dj = 0 and there is only

one independent solution [3], which is given by (3.9). The hypergeometric function

can be expanded to give

oo (_j/2),_r/n_(-J. 1;,7)= Z: (c.2)
z' (1).n!rt=0

97
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( )n is Pochhammer's symbol [1] where

(f)n = r(/+ n)
P(f) = f(f ÷ 1)(f + 2).-. (f + n- 1),

f represents any number, and

(1)n=n! and (f)0=l-

Using (C.2) in the invariant integral (3.10) gives

(-j/2)n
ij = 4(J+2)/27rCJ _ f0 rf/2+'_e-vdrl" (C.3)n=0 @!)2

Evaluating this integral, we find that

(-j/2)_r(y
AJ : 4(J+2)/2_OJE _ _ + _ + 1). (c.4)

n:0

First, let's look at odd values of j. Both F(j/2 + n + 1) > 0 and (n!) 2 > 0, but

the sign of

J 1)(-_ + (-[ +n- 1)(-J)_ = (-J)(-_ + 2)... j

depends on the value of n. For odd j, (-j/2)_ changes sign only once as n increases

from n = 0 to n --+ c_. Because of this, the summation in (C.4) is unbounded.

When j is even, (-j/2)n = 0 for n > j/2 + 1 and the series in (C.4) truncates.

Taking j to be even gives a finite value of A3 and leads to the reference flow solutions

found in §3.1.

%:: ;2

' %
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Appendix D

Similarity at Higher Orders

In chapter 4 the O(M 2) compressible perturbation equations are shown to be invari-

ant under the action of the same three-parameter Lie group (3.4) which leaves the

reference flow equations invariant. In this appendix we will explore the similarity

of the compressible perturbation equations for higher orders of approximation in the

Rayleigh-Janzen expansion (2.8):

/= So+ M211+ M4_ + M613+.... (D.1)

We will find that the O(M 4) equations for the compressible perturbations are also

invariant under the same group; the invariance of the perturbation equations may

actually exist at each level of approximation in (D.1).

To O(M 4) the equations governing the compressible perturbations are

0t52 1 cO

o--P+ _(_ + _eF) = o, (D.2a)

_ __ 2Vo_2 _0152 t52_ + 2_i_o_i + _ +_ (D.2b)
0_ _ _ _ r '

10 _
, (D.2c)

99
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a,a_l (_1+ _1)a ,
+ '97- + (v- 1) s bT(sa,) +

= 2_(__1){a_0 _0){a_l -)

"}']_1 = /92 -J'- ¢2 -J- piT1.

(_- 1)a (_)
r Or

(D.2d)

(D.3)

Here, each of the O(M 4) terms is denoted by the subscript 2.

The similarity forms of the O(M 2) flow quantities are given in table D.1. Note

that for each similarity variable, the next higher order similarity variable differs by

a factor of (T + Ti)(2m+l). We will not pursue this pattern any further here, but it is

quite possible that it persists at successively higher orders of approximation.

o0) O(M_) O(M_)

V = _)o(T --_ fi) (rn+l/2)

P = 15o(7 + n) (2m+1)

= A(_ + _{)(_'+_)

a = _'i(7- + n) ram+3�2)

¢ = "_1("r + "r{)(3m+_/2)

"¢= _l("r + n) (4"+2)

_2 = T2(_ + n) (4"+2)

_2 : p2(T -_- Ti) (4ra+2)

a9 = _ 0- + n) (4m+5/_)

¢_ = f_0- + n) (_'_+_)

Table D.I: Similarity forms.

The similarity forms of the O(M 4) equations are:

d/32 d

_--_ + (4m + 2)_2 - _ (a2r] '/2 + afl_ '/_)

2_d-_¢__ =/%V 2 + 2/_V¢ + 2V¢2 + ¢2,
m/

= 0, (D.4a)

(DAb)

i

' r-
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_, ,. •

_2

d_2 ]r]--_ + (4m + 2)a2

d (_1_)+ (_ +_)_ (_v) +_
d 2

--=_ .1/2 (r]i/2¢2), dr2

_5 [ drl + (2m + 1) a + arl 1/2

+ (7- 1)(_+#)_ (,1/2_)

_ 27(7- 1) [TldV

+ -y d [ da2'_

(D.4c)

(DAd)

d

+ (7- 1)_-_ (r]l/2a2)

dr]

(D.4e)

Note that even though each level of approximation in the compressible pertur-

bation equations may be invariant, the sum of terms of different orders for a given

variable will not be self-similar; this is because each level of approximation has a

different decay rate. From a physical standpoint, we would not expect the sum of

several different orders of compressible perturbations to be self-similar, because as

discussed in § 2.1.1 above, the full Navier-Stokes equations do not admit similarity

solutions for a free compressible vortex.
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